
2112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Content Harvest Network: Optimizing First Mile for
Crowdsourced Live Streaming

Haitian Pang , Student Member, IEEE, Zhi Wang , Member, IEEE, Chen Yan, Qinghua Ding, Kun Yi,

Jiangchuan Liu , Fellow, IEEE, and Lifeng Sun , Member, IEEE

Abstract— Crowdsourced live streaming (CLS), such as
Twitch.tv and Inke.tv, has emerged as an important multimedia
application in recent years. Video delivery in such CLS service
involves two steps: 1) video uploading—video streaming (i.e.,
a live channel) generated from a broadcaster is uploaded to
the server, which we call the “first mile” network and 2) video
distribution—the video streaming is then delivered to viewers
in the channel. Today’s CLS services usually use conventional
content delivery network solutions to address the video distrib-
ution problem, while little attention has been paid to improve
the video uploading quality. Our measurement study shows that
the first mile network causes 17% viewer rebuffers, and some
viewers quit the channel once encountering rebuffer. In this
paper, we propose a content harvest network (CHN) architecture
to address the uploading problem in the CLS service. Specifically,
the CHN architecture employs edge devices in the network as
relays to receive the streaming uploaded by broadcasters and
then forward to the central servers. On one hand, we need to
reduce the latency since it is live streaming; on the other hand,
we must provide sustainable upload bandwidth. It is challenging
to achieve both at the same time, especially in such high dynamic
system as CLS. In order to provide global optimal and real-time
assignment, we propose a hybrid solution, i.e., centralized and
distributed assignment. Specifically, we formulate the centralized
relay assignment problem as an optimization problem to achieve
both low latency and sustainable bandwidth. To cope with the
frequent channel establishments, we use a multi-armed bandit
method to characterize the time-variant network condition.
Experiment results on a large-scale trace provided by Inke.tv
show that our solution can reduce the overall viewer cost by 40%
compared to state-of-the-art solutions. The viewers’ rebuffer can
also be reduced by 50%.

Manuscript received March 15, 2018; revised July 15, 2018; accepted
July 20, 2018. Date of publication August 2, 2018; date of current version
July 1, 2019. The work of H. Pang, C. Yan, Q. Ding, K. Yi, and L. Sun
was supported in part by the National Natural Science Foundation of China
(NSFC) under Grant 61472204 and Grant 61521002, in part by the Beijing
Key Laboratory of Networked Multimedia under Grant Z161100005016051,
and in part by the Key Research and Development Project under Grant
2018YFB1003703. The work of Z. Wang was supported by NSFC under Grant
61531006. The work of J. Liu was supported in part by the Canada NSERC
Discovery Grant, and in part by NSERC E.W.R. Steacie Memorial Fellowship.
This paper was recommended by Associate Editor Y. Wen. (Corresponding
author: Lifeng Sun.)

H. Pang, C. Yan, Q. Ding, K. Yi, and L. Sun are with the Depart-
ment of Computer Science and Technology, Tsinghua University, Beijing
100084, China (e-mail: pht14@mails.tsinghua.edu.cn; yc.1995@foxmail.com;
dqh14@qq.com; james1996thu@163.com; sunlf@tsinghua.edu.cn).

Z. Wang is with the Graduate School at Shenzhen, Tsinghua University,
Shenzhen 518055, China (e-mail: wangzhi@sz.tsinghua.edu.cn).

J. Liu is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada (e-mail: jcliu@cs.sfu.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2018.2862619

Index Terms— Crowdsourced live streaming, broadcaster
uploading, content harvest network.

I. INTRODUCTION

THE current data traffic on the Internet is dominated by
video streaming, which will account for 82% by 2021.

Live streaming is one of the most important fuel for the
video burst, which is forecasted to grow 15-fold from 2016 to
2021, and account for 13% of Internet video traffic by 2021,
according to Cisco’s report [1]. The newly emerged crowd-
sourced live streaming (CLS) is gaining rapid increase. such
applications as Facebook Live, Inke.tv, and Twitch.tv have
attracted millions of daily active users. The key idea of CLS
is that numerous widely-distributed broadcasters provide live
streaming to viewers using mobile computing devices (e.g.,
smartphone and tablet). As a practical example, Inke.tv [2],
one of the largest CLS platform in China, allows anyone to
broadcast his content to massive viewers via mobile devices.
The monthly active user (MAU) of Inke.tv reached 24.6 mil-
lion, and the registered member reached 164.6 million by
March 2017. End users in CLS not only consume contents but
also produce contents. One broadcaster can establish only one
channel concurrently, but he can establish different channels
in different time periods. The lifecycle of one viewer watching
one channel is defined as a session.

Different from Video on Demand (VoD) services (e.g.,
Hulu or Netflix) and professional live streaming services (e.g.,
ESPN), the CLS service faces an especially severe chal-
lenge for low latency and sustainable bandwidth as the most
broadcasters employ ordinary mobile devices and unstable
network for live streaming. Specifically, the challenges of
video delivery in CLS are provided as follows:

• The broadcaster’s bandwidth of first-mile upload network
is much smaller than the download link due to the
asymmetry of today’s Internet architecture.

• In order to provide real-time interaction between broad-
casters and viewers in the CLS service, ultra-low network
transmission latency is required in the unstable network.

• The massive broadcasters establish and terminate broad-
cast channels arbitrarily, incurring high churn rate of
the streaming service. In our measurement, the channel
number in peak hours is 1.87× of in low hours.

Due to the above challenges, a novel architecture for video
uploading is expected to support the massive and unstable

1051-8215 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3415-9912
https://orcid.org/0000-0002-5462-6178
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-4057-5138

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2113

uploading sources in the CLS service. We conduct a measure-
ment study on Inke.tv, which is one of the most popular CLS
provider in China supported by the conventional CDN [3],
and find the first-mile network accounts for 17% viewer
rebuffers. Moreover, the larger broadcaster uploading latency
causes more viewer rebuffers, and the viewers may quit a
channel when encountering rebuffer. We further observe that
the streaming service is vulnerable and sensitive when the
broadcaster’s uploading capacity varies frequently. Fortunately,
the measurement results show that employing relay network
can potentially improve the uploading network performance
and further cope with the above challenges in CLS [4].

Inspired by the measurement results and the trend that edge
computing [5] and smart router [6] are playing an important
role in content delivery, we design a relay-based content
harvest network to address the first mile network problem
for the CLS service. The key idea is that using the relay
technique, we can potentially find an alternative network path
with higher available bandwidth, lower latency, and lower loss
rate. Specifically, CHN utilizes dedicated edge nodes to form a
relay network, providing the broadcasters with optional routing
schemes with better network condition. In this way, live
streaming can be delivered directly to the server or relayed to
the relays first and then delivered to the server. The challenges
of this novel architecture are as follows:
• How to choose the right edge devices to achieve both

low latency and sustainable bandwidth in the first mile
network for a broadcast channel.

• How to dynamically adjust the relay assignment as the
network conditions vary over time and broadcast channels
establish and terminate frequently.

• How to allocate the resource of the relay network effi-
ciently among the broadcast channels to minimize the
overall cost.

To address the above challenges in CHN, we propose a
hybrid (centralized and distributed) solution to assign the
relays. Specifically, we formulate the centralized relay assign-
ment as an optimization problem, in which we achieve the
multi-objective optimization, i.e., low latency, low loss rate,
and sustainable bandwidth. Then we design an approximated
algorithm using rounding technique and further design a fast
implementation in polynomial time. As the network condi-
tion varies over time, we need a dynamic relay assignment
strategy to capture the real-time network condition. In this
way, we enable the real-time decision in broadcaster devices
using the MAB-based method [7], which models an agent with
historical information taking action repeatedly to maximize
the accumulated reward. In our scenario, it can exploit the
current optimal relay and explore the potential better relays
in the time-variant network condition. Experimental results
on a large scale dataset of Inke.tv show that with the aid of
CHN, the total viewer cost is reduced by 40% compared to
the conventional CDN-based method. The MAB-based method
can reduce the latency by 27% and improve the bandwidth by
140% compared to the static assignment. Viewers’ rebuffer can
be reduced by 50% in peak hours using the proposed method.

The remainder of this paper is organized as follows.
Section II introduce the insight of the real-world data

TABLE I

FOUR DATASETS USED IN THE MEASUREMENT

measurement. Section III introduce the architecture design.
Section IV present the centralized relay assignment method.
Section V present the distributed relay assignment method.
Experiment results are provided in Section VI. We introduce
the related work in Section VII and conclude in Section VIII.

II. DATA ANALYSIS AND INSIGHTS

In this section, we investigate the dataset to know how
the first mile upload network affects the viewer experience,
the challenges in improving the CLS service, and the insights
to design the CHN.

A. Dataset Description

Inke.tv is a pioneering CLS provider in China, which allows
common users to broadcast live streaming to other mobile
users. In order to better understand the inherent challenges
and insights of CLS service, we conduct data analysis on
the real-trace dataset provided by Inke.tv from December 9,
2016 to February 27, 2017, containing 1.2M broadcasters
establishing 25M channels within 80 days, bringing about
1.5B views. Note that one channel means one broadcaster
establishing one streaming session. We believe that this dataset
is representative of the CLS service, as the time span is long
enough, the involved sessions are large in number. In addition,
as the dataset is provided directly by a CLS service provider,
many items like the location of broadcasters and viewers are
also included.

Table I shows the datasets we use to perform the measure-
ment. Each broadcaster entry corresponds to one established
channel, which contains the broadcaster ID, the channel ID,
the timestamp when the channel is established and terminated,
and the broadcaster location (recorded by GPS, in longitude
and latitude). We also collect the upload streaming log, which
contains the channel ID, the packet ID, the timestamp when
the packet is sent, and the corresponding uploading latency.
Each viewer entry corresponds to one view session in a
broadcast channel, containing the viewer ID, the channel ID,
the timestamp when viewers entering and exiting, and the
viewer location (in longitude and latitude). We also collect the
network log of packet-level viewer entry, in which each entry
contains the channel ID, the packet ID, the timestamp, and
the viewer rebuffering (yes or no). Joint utilizing the upload
streaming log and the viewer network log, we can investigate
the impact of the uploading network on viewers.

2114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Fig. 1. Broadcasters’ viewer number v.s. viewers in descent order of viewer
number.

Fig. 2. Broadcaster number over time.

Fig. 3. Broadcaster and Viewer number in a day.

B. Overview of the CLS Service

In order to obtain the popularity pattern, we investigate the
average viewer number of a broadcaster based on his historical
sessions. The intuition is straightforward: the popularity of a
broadcaster is stable, as each broadcaster has his own fans.
Fig. 1 shows that the distribution of the broadcaster’s average
viewer number is highly skewed. The observation inspires us
to estimate the popularity of a channel considering instant
viewer number and the broadcaster’s historical popularity.
We further prioritize the channel based on the estimated pop-
ularity as optimizing the more popular channels will benefit
more viewers.

The curve in Fig. 2 represent the broadcaster number in ten
days. The broadcaster numbers over time bear periodic pattern.
Then, we plot the broadcaster and viewer number in the
different time periods in one day on one CDN node in Fig. 3,
and notice that the peak hour of broadcasters and viewers
are both around 22:00. The broadcaster number can reach
7,000 in the peak hour. The broadcaster number in the whole
system is even more. A large number of broadcasters make
CLS a multi-source service, which is computation-consuming
and calls for high scalability. We further investigate the pat-
tern of the broadcaster channel establishment and termination
in Fig. 4, where the unit time is set to 1 minute, and we
find that many channels are established and closed in unit
time. In particular, the maximum number of establishment

Fig. 4. Channel establishment and termination number.

Fig. 5. CDFs of channel duration and session duration.

reaches 900 and appears around 22:00, which is the start time
of the peak period in the system. The maximum number of
termination reaches 1,200 and appears around 24:00, which is
the end time of the peak period.

Fig. 5 shows the duration distribution of channels and
sessions. Recall that the channel is defined as the lifecycle
of one broadcaster establishing live streaming, and the session
is defined as the lifecycle of one viewer watching a channel for
one time. The average duration of a channel is 32 minutes, and
the average duration of a session is 8 minutes. Both channels
and sessions establish in relatively short duration, causing
high temporal dynamic of the CLS service. This observation
indicates that the channels are highly dynamic, which inspires
us to employ real-time assignment to perform fast response.

C. Impact of First Mile Network on Viewer Experience

[8] showed that the viewer rebuffer may either be caused by
the first mile (broadcaster’s source) or the download network
(viewer’s side) congestion, we need to first identify the viewer
rebuffers caused by the first mile network congestion. Once
the first mile network is congested, the CDN server fails
to receive the uploading streaming, causing all the viewers
to encounter rebuffer, as no buffer is in viewers’ devices.
While the download network congestion of one viewer cannot
affect others. In this way, only part of the viewers will
encounter rebuffer. We define the viewer rebuffer percentage
as the number of rebuffered viewers divided by the number
of all viewers in the same channel in one time slot. Fig. 6
illustrates the distribution of the viewer rebuffer percentage,
where the x-axis is the rebuffer percentage, and the y-axis is
the percentage of the case that the rebuffer percentage is no
larger than x . We find the CDF is a piecewise function, where
the case that 100% viewers encounter rebuffer concurrently
accounts for 17% total rebuffers, which is caused by the
first mile network congestion. This indicates that the file-mile
network causes a significant portion of viewer rebuffers.

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2115

Fig. 6. Distribution of concurrent viewers rebuffer percentage in a channel.

Fig. 7. Fraction of time when viewer rebuffers happen in the view period.

Fig. 8. Session (larger than 1min) duration versus average rebuffer interval.

We further focus on how the viewers react to rebuffers.
Fig. 7 depicts the time when viewer rebuffer happens. The
x-axis is the time percentage of the viewing lifecycle, which
is normalized to [0, 1], and the y-axis is the CDF of rebuffers.
We filter the viewing sessions by the duration of viewing above
a certain threshold to skip the ultra-short sessions. Specifically,
we present the results where the thresholds are set as 0, 1,
2, 5 minutes, respectively. We have two key observations as
follows: The first observation is that viewers tend to encounter
rebuffer before they exit the channel, i.e., when x approximates
1. We may infer that some viewers exit the broadcast channel
because they cannot bear the rebuffers. In this way, it is
important to reduce the viewer rebuffer to improve their
experience. The second observation is that many viewers
encounter rebuffer when they enter the channel, i.e., when x
approximates 0. This is caused by long startup delay, i.e., the
viewer starts to request streaming from the server, while the
streaming has not reached the viewer’s device due to the delay
between the broadcaster and the user device.

Next, we focus on the relationship between the viewer
session duration and the average rebuffer interval in Fig. 8.
The x-axis is the average rebuffer interval, which is defined
as session duration

number of rebuffer , and the y-axis is the session duration.
Average rebuffer interval can reflect the viewer’s watching
experience within a channel. We divide the average rebuffer
interval into several levels, and a larger level indicates a lower
rebuffer frequency. We notice that viewers with lower rebuffer

Fig. 9. Correlation between uploading latency and number of viewer rebuffer.

frequency will watch the channel longer. This is due to the fact
that frequent rebuffer reduces the viewer QoE and result in
viewers quit the channel. Above observations prove that poor
first mile network conditions may cause viewers to encounter
rebuffer frequently, and this will further cause the viewers to
quit the channel.

Knowing that the first mile network will cause viewer
rebuffer, we want to further derive the correlation between the
upload latency and the viewer rebuffer. In Fig. 9, each sample
illustrates the number of viewer rebuffer versus uploading
latency. We observe a large uploading latency generally results
in more rebuffer number. Specifically, we find the Pearson
correlation coefficient equals 0.55, which implies a strong
correlation between uploading latency and rebuffer number.
We further derive the corresponding linear function

y = 0.6087x − 65.5734. (1)

This observation motivates us to reduce the uploading latency
for potentially better viewer experience.

D. Potential Improvement of Relay Network

We investigate the one-hop relay network based on a tracer-
oute dataset collected on the Youku’s peer video CDN [9]
in December 2015. We analyze the direct latency and the
relayed latency between 6365 node pairs. The average number
of relays for each node pair is 14.09, and 75% node pairs
can improve the network performance via the relay paths.
This validates that relay nodes can be utilized to improve the
network performance. The challenge is to find the relay which
can reduce the latency most significantly. Note that in the cases
when the relays cannot improve the network performance,
the direct path should be utilized instead of the relayed path.

Furthermore, we look into the dynamic in the relay network.
In Fig. 10, each sample is the network latency versus the
network bandwidth of one connection between the broadcaster
and the relay. The network latency and bandwidth are mea-
sured and collected by the tcpdump tool. The user establishes
the connection with 4 relays, and we notice that even for the
same user-relay pair, the network condition varies greatly. The
rationale behind this observation is as follows: (1) relays are
physically deployed at different locations and with different
ISPs, making average network metrics different. (2) Network
metrics between a broadcaster and a relay fluctuate with time.
This inspires us to dynamically select the optimal relays
for broadcasters based on the historical and instant network
metrics.

2116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Fig. 10. The bandwidth and latency of the Source-Destination pair using
different relays.

Fig. 11. CDN-based live streaming system.

III. ARCHITECTURE DESIGN

A. Overview of CDN-Based CLS

We first introduce a typical CDN-based CLS architecture
in Fig. 11, which is adopted by many CLS providers like
Inke and Twitch. In level-1, the widely distributed broadcasters
upload video streaming to the upload server (upServer) of
the CDN (level-2). These upServers are geo-distributed so
that broadcasters can choose a cost-efficient server for video
distribution. Furthermore, the upServer will transcode the
video to multiple quality versions, which is computation-
intensive. Then the transcoded streaming will be delivered
to the download servers (level-3). The download servers are
distributed in different geographical locations (e.g., U.S. West
and China East), and will serve the viewer requests (level-4)
in its region.

Although the network congestion in each link from level-
1 to level-4 may affect the viewer QoS, the first mile network
between level-1 and level-2 is most critical in the whole path
of CLS [8] for the following reasons: first, a single broadcaster
uploading link may affect all the viewers in the channel,
thus improving the single first mile network can benefit tens
of thousands of viewers; second, in most cases the network
uploading condition is poor due to limited uploading ability.
Therefore, improving the performance of the first mile network
is an economical way to benefit all viewers in the channel by
only optimizing the single first mile network. To this end,
we aim to improve the first mile network using the relay
network.

Fig. 12. System overview of content harvest network.

B. Introduction to Content Harvest Network

We present the architecture of CHN in Fig. 12, where we
incorporate relays into the first mile network. Each upload
streaming can take either the “direct path” (blue arrow) or the
“relayed path” (green arrow). When taking a “relayed path”,
the streaming is first forwarded to a relay, and then forwarded
to an upServer. The relays are provided by some edge network
operator, who crowdsource the resource of edge devices [5],
[6]. When a “relayed path” outperforms the default path,
we can choose the “relayed path” to reduce latency and obtain
sustainable bandwidth [10].

The relay assignment problem is based on the network
performance. Specifically, the network condition between each
relay-upServer pair, broadcaster-relay pair and broadcaster-
upServer pair is measured and transferred to the centralized
assignment server. Keeping track of the network performance
between the relay and upServer is feasible, as both are con-
trolled by the CLS provider. However, the network attributes
of broadcasters (e.g., IP address, AS) are highly dynamic
and large in number, making direct measurement infeasible.
Previous works [11], [12] employ data-driven approaches such
as cluster methods to predict the network performance. This
is a well-studied topic and is out of scope in this work. With
the network performance collection from direct measurement
and prediction, the network performance keeps up to date,
which can be used for relay assignment. Note that the overhead
of network measurement is negligible, as all the data is
collected in a passive way [13], i.e., when a streaming session
is established, the network performance is recorded by the
relay nodes and upServers, and reported to the centralized
assignment server. The update frequency can be set in seconds
for accurate monitoring.

Given the system architecture and the insights in the mea-
surement, we present the design principles as follows:

• Hybrid Solution: We implement centralized assignment
to optimize the multi-objective relay assignment prob-
lem of all the broadcasters periodically. In addition,
the distributed assignment is required to cope with the
relay assignment problem in real-time when one specific
broadcast channel establishes.

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2117

• Prioritized broadcast channel: Different channels serve
different number of viewers, and the popular channels
should be prioritized for relay selection to benefit more
viewers.

• Cost-efficient path: The relay path should be selected
optimally to reduce the streaming delivery cost in the
path.

C. Hybrid Assignment

We further introduce the hybrid assignment solution in
details, which determine the relay assignment at different time
scales and broadcaster number scales. The hybrid solution
determines whether a broadcast streaming should be relayed,
and further which relay to use. The centralized assignment
takes the whole network information as input and calculates
the optimal relay assignment of all broadcasters as output.
Due to relatively large computation, the centralized assignment
operates in a periodic way. We should strike the tradeoff
between system optimality and computation as well as network
overhead. Detailed discussion on the period is provided in the
experiment section. We formulate the centralized assignment
problem as an optimization problem and provide an efficient
fast algorithm in Section IV.

When a broadcast channel is established, it should be
relayed to an optimal path at once. The centralized assign-
ment is not appropriate in this scenario, as the centralized
assignment cannot guarantee fast response. Hence, we design
the distributed assignment, which makes a quick decision
for a better network condition in subsecond response time
when a broadcast channel is established. The relay decision is
performed on the broadcasters’ devices and relay nodes in a
distributed way. Specifically, the broadcaster’s device decides
which relay to use with the MAB method, which explores
the network conditions based on the historical data. Once a
broadcast channel is assigned to a relay, the relay nodes then
decide which upServer to upload based on the current traffic
information. The algorithm is provided in Section V.

D. An Illustrative Example

To introduce the architecture features and demonstrate the
key design principles (prioritized broadcast channel and cost-
efficient path), we provide an illustrative example in Fig. 13,
where we consider a system with two broadcasters {B1, B2},
two relays {R1, R2}, and one upServer {U}. The bitrates of the
broadcasters are [800, 400] kbps. The available capacity of the
relay-upServer can be measured, which are [1000, 800] kbps.
The link cost of each node pair is denoted in Fig. 13, repre-
senting the QoS loss caused by packet loss and transmission
delay. Since both the loss rate and delay are additive, we can
derive the path cost table in Table II.

We show the optimal relay assignment policy in Fig. 13,
where the broadcaster popularities are [1000, 10] and [10, 10],
respectively. When the popularity of B1 is very large, it gets
the priority to select the most cost-efficient path [B1, R1, U],
although B2 can obtain the larger cost decrease when selecting
R1 as the relay. When the popularity of B1 and B2 are the

Fig. 13. An illustrative example of relay assignment optimization. The blue
values are the link costs, the red values are the available bandwidths, the green
values are the required bandwidths, and the brown values are the channel
popularities.

TABLE II

RELAY COST MATRIX. (NOTE THAT φ MEANS NO RELAY IS USED, AND

THE BROADCASTERS UPLOAD TO THE UPSERVER DIRECTLY)

same, B2 is assigned to R1, as the path cost is reduced most
remarkably.

IV. CENTRALIZED ASSIGNMENT: FORMULATION

AND OPTIMIZATION

In this section, we provide the formulation of the global
relay assignment problem. The problem is unique in the
following aspects: (1) Optimizing one broadcaster can benefit
all the viewers, and the key challenge is estimating the
viewer number. (2) Our method can avoid the overload of
the upServers as we consider the transcoding and network-
ing capacities. We prove that the optimization problem is
NP-hard and design fast algorithms to achieve sub-optimal
performance. In order to achieve low latency, low loss rate,
and sustainable bandwidth at the same time, which guarantees
good network quality, we incorporate the latency and the loss
rate as a comprehensive network cost and set the sustainable
bandwidth as the constraint. As the centralized assignment is
computation-intensive, it works in a periodic way.

A. Basic Network Model

The broadcaster set can be denoted as B = {1, 2, . . . , B}.
The edge relays, i.e., devices with network transmission
capacity, are used to relay data from the broadcasters to the
upServer, and we denote the relay set as R = {1, 2, . . . , R}.
The destination of the broadcaster streams is the upServers
denoted as U = {1, 2, . . . , U}. We assume that the upServer
has the limit of computation, e.g., transcoding, and we denote
the limit as Com, which is measured in bps. As we allow one-
hop relay, the broadcaster will be assigned to one relay or no
relay, depending on the relay assignment. The relay assign-
ment option of each broadcaster b is denoted as r(b) ∈ R∪{0},
where r(b) = 0 means that the broadcaster is assigned to
no relays, and delivers the stream to the upServer directly.

2118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Thus, we can denote the relay option set as R∗ = R ∪
{0} = {0, 1, 2, . . . , R}. Whether or not the broadcaster is
assigned to a relay, the destination of the broadcaster stream is
one specific upServer of the CDN. Specifically, the upServer
assignment of each broadcaster b is denoted as u(b) ∈ U .
The centralized assignment aims to determine the relay and
upServer assignment (r(b), u(b)); ∀b ∈ B to optimize the
global system performance.

B. Network Cost Model

The relay assignment problem relies on the network quality
of the broadcaster-to-relay link, the broadcaster-to-upServer
link, and the relay-to-upServer link. We denote the available
bandwidth between relay r and upServer u as c(r, u). Hence,
C R−U = {c(r, u)}; ∀r ∈ R, u ∈ U is a matrix representing the
available bandwidths of all possible relay-to-upServer pairs.
Note that we cannot derive the available bandwidth related to
the broadcaster, as the broadcaster is not under control and the
bandwidth is highly dynamic. However, we can estimate the
loss rate and delay between any node pair of the uploading
path, as mentioned in [11]. For a node pair (i, j) in the
uploading path, the loss rate is denoted as l(i, j), and the delay
is denoted as d(i, j). Based on above definitions, we define
the video QoS of the node pair as a weighted sum of loss rate
and delay measured [14]–[16]. Formally, the link cost si, j can
be formulated as follows:

si j = αd(i, j)+(1−α)l(i, j), 0<α<1, ∀i, j ∈ B ∪R ∪ U,

(2)

where α is a parameter balancing the loss rate and the
delay. The uploading path cost is defined as S(b, r(b), u(b)),
reflecting the loss rate and transmission latency of the link:

S(b, r(b), u(b))=
{

s(b, u(b)) r(b) = 0

s(b, r(b))+s(r(b), u(b)) r(b) ∈ R∗/{0}
(3)

C. Broadcaster Model

The broadcasters are heterogeneous in bitrate, as each
broadcaster has unique device setting and video content.1

We denote the bitrate of broadcaster b as t (b). Our objective
is to minimize the comprehensive network cost of viewers by
improving the broadcaster’s network. The unique characteristic
of optimizing the broadcaster’s network is that each broadcast
channel bears different popularity, thus has different impacts
on viewers. Based on the analysis of the broadcaster patterns,
we notice that the viewer number varies among different
broadcasters, which inspires us to illustrate the popularity
of broadcasters. Specifically, we define the current viewer
number as Pc(b), which is a measure of the channel popularity.
However, the centralized assignment works in a periodic way,
thus requires future information. Hence, a more accurate
popularity method is required. In this paper, we develop a
technique to estimate the popularity of a channel by focusing
on the weighted viewer number of current viewer number and

1 [17] detected that the bitrates in a CLS platform are highly heterogeneous.

broadcaster average viewer number. We use the exponential
moving average method to predict the viewer number as
follows:

P(b) = (1− β)Pa(b)+ β Pc(b), 0 < β < 1, (4)

where P(b) is the popularity of the broadcaster b, Pa(b) is
the average concurrent viewer number of broadcaster b, β is
the smoothing factor. Larger values β reduces the smoothing
level, and when β = 1 the popularity is the current viewer
number. Thus, the overall viewers’ cost of channel b is P(b) ·
S(b, r(b), u(b)).

D. Problem Formulation

Our aim is to minimize the overall cost by assigning
the relay decisions in the first mile network. We introduce
xb(r, u) ∈ {0, 1},∀r ∈ R∗,∀u ∈ U to represent the joint relay
and upServer assignment, �xb follow the constraint:

|�xb| = 1, ∀b ∈ B, (5)

indicating that there is only one path from the broadcaster to
the upServer.

In order to guarantee sustainable network bandwidth,
we have the following link capacity constraints:∑

b∈B
t (b) · xb(r, u) ≤ c(r, u), ∀r ∈ R, u ∈ U, (6)

The upServer is computation intense as the video transcod-
ing and forwarding is performed in it. As [18] illustrated
that the more popular videos should be transcoded into more
replications, we define H (P(b)) as a concave increasing
function of the computing resource spent when transcoding
the streaming of broadcaster b with popularity P(b). Hence,
the upServer computing constraint can be denoted as:∑

b∈B
t (b)H (P(b)) ·

∑
r∈R∗

xb(r, u) ≤ Com, ∀u ∈ U, (7)

Then S(b, r(b), u(b)) can be reformulated as S∗(b, �xb),
which is shown as follows:

S∗(b, �xb) =
∑

r∈R∗

∑
u∈U

S(b, r, u) · xb(r, u) (8)

The global relay assignment problem can be formulated as:

min
∑
b∈B

∑
r∈R∗

∑
u∈U

P(b) · S(b, r, u) · xb(r, u)

subject to (5), (6), (7)

xb(r, u) ∈ {0, 1}, ∀b ∈ B, r ∈ R∗, u ∈ U, (9)

We can achieve the optimal relay assignment via solving the
above problem, which is denoted as the optimal assignment
problem (OAP).

Theorem 1: The optimal assignment problem (OAP) is
NP-hard.

Proof: We prove the NP-hardness of OAP by reduction to
the knapsack problem. Suppose there are only one relay node
and one upload server in this broadcast system, i.e. R∗ =
{0, 1}, U = {1}. We assume the computation capacity of the
server is unlimited, i.e., Com = +∞, thus the constraints in

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2119

TABLE III

NOTATIONS OF IMPORTANT VARIABLES

equation 7 always satisfies. Furthermore, we assume that all
broadcasters taking the relay path bear the same link quality
and we normalize it to 1, i.e., S(b, 1, 1) = 1,∀b ∈ B and
S(b, 0, 1) = 0,∀b ∈ B,∀u ∈ U . Moreover, the constraint of
capacity on path {1, 1} is denoted as l(1, 1) = W . The problem
becomes “How to maximize the viewer number transmitted via
relay network under the constraint of the path capacity, given
that each broadcaster bears a bitrate and a viewer number.”
Specifically, the original problem is reduced to the following
problem:

max
∑
b∈B

P(b)xb

∑
b∈B

t (b)xb ≤ W

xb ∈ {0, 1}, ∀b ∈ B, (10)

We notice that the above problem is a classical 0-1 knapsack
problem. As the 0-1 knapsack problem is known to be NP-
hard, we prove the NP-hardness of the OAP.

E. Algorithms

Since OAP is proved to be NP-hard, we cannot obtain
the optimal solution in polynomial time. In this section,
we provide Greedy Rounding Algorithm (GRA) for the OAP
with rounding technique, and prove that the method is theo-
retically bounded. GRA method runs relatively fast in small
and medium network scale, while in the large-scale network,
we need faster implementation. In order to accelerate the
calculation process, we further develop a fast implementation
(FGRA) of GRA, which has computing complexity in poly-
nomial time and processes fast in the large-scale network.

1) Greedy Rounding Algorithm: Intuitively, we prioritize
the optimization of popular channels to benefit more viewers.
However, the direct greedy strategy may not provide satisfying
results as it ignores the network quality. A better algorithm
should be designed to consider both the channel popularity
and the network resource. Motivated by the rounding tech-
niques [19], we design a greedy rounding algorithm (GRA).

xb(r, u) ≥ 0, ∀b ∈ B, r ∈ R∗, u ∈ U (11)

First we relax the binary variant constraints as shown in equa-
tion (11). This relaxation changes the original problem into a
linear programming problem. This relaxed linear programming
can be effectively solved using classical methods like simplex
method [20]. In this way, we can derive the solution of
the linear programming denoted as x∗b (r, u). This solution
cannot be applied directly, as we expect binary variants as the
solution. We further need to obtain a feasible binary variables
solution.

Here we extract the system cost brought up by each broad-
caster as follows:

W (x∗b (r, u)) = P(b) · S(b, r, u)x∗b (r, u), (12)

which can be regarded as the “weight” of the broadcaster.
This weight reflects how much cost the variable induces.
Intuitively, the variables inducing larger cost should be set
at a smaller value. Hence, we round the broadcasters in
weight descending order. Furthermore, in order to satisfy the
constraint of equation (5), we can only round xb(r, u) with the
highest weight. Specifically, we show the rounding policy as
follows:

xb(r, u) =
{

0 if (r, u)
= arg(r,u) max W (x∗b (r, u))

1 if (r, u) = arg(r,u) max W (x∗b (r, u))
(13)

After performing the rounding process, the link capacity and
computation constraints may still be violated. Thus we should
consider the feasibility in the rounding process, and round
the broadcaster which is feasible and has the largest weight.
We show the greedy rounding algorithm in Algorithm 1.

We can prove that GRA is O(|R| · |U |)-optimality in cost
upper bound.

2) Fast Implementation for Greedy Rounding Algo-
rithm (FGRA): We notice that in GRA, we need to solve a
linear programming in the relaxation part. The most widely
accepted method is the simplex method, which may induce
exponential complexity [20] when the network scale gets large.
As a result, we develop FGRA, which uses a heuristic to
approximate GRA method. We look into x∗b (r, u) in the relaxed
linear programming problem, and find that the path with lower
cost corresponds to a larger x∗b (r, u). Heuristically, we want to
find an approximation for x∗b (r, u). We define γ as the lowest
achieved cost without relay:

γ = min
u

(S(b, R + 1, u)), ∀u ∈ U (14)

Then we use heuristic to define x∗b (r, u):

x∗b (r, u) = eγ−S(b,r,u), ∀b ∈ B, r ∈ R∗, u ∈ U . (15)

2120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Algorithm 1 Greedy Rounding Algorithm
1: procedure GREEDY-ROUNDING(P, l, S, t, Com)
2: I. Relaxation
3: Solve the relaxed LP and get fraction results x∗b (r, u)
4: II. Rounding
5: for b ∈ B ranked by

∑
r,u P(b)S(b, r, u)x∗b (r, u) do

6: Rank the (r, u), r ∈ R∗, u ∈ U by W (x∗b (r, u))
7: (rb, ub)← the first (r, u) that satisfies the const.
8: xb(rb, ub)← 1
9: for (r, u)
= (rb, ub), r ∈ R∗, u ∈ U do

10: xb(r, u)← 0
11: end for
12: end for
13: end procedure

After obtaining x∗b (r, u), the rounding process in FGRA
method is the same as the GRA method. We have the following
theorem for the complexity of the heuristic greedy rounding
algorithm (FGRA).

Theorem 2: The computing complexity of the FGRA algo-
rithm is O(|B| · |U | · |R| log(|U | · |R|)).

Proof: We consider the complexity of rounding process
- the second part in the algorithm. The time limit appears
at the step of ranking the (r, u) pairs for each b ∈ B. The
complexity of this rounding part for one broadcaster is O(|U | ·
|R| log(|U | · |R|)). Thus the complexity of all the broadcasters
is O(|B| · |U | · |R| log(|U | · |R|)).

V. DISTRIBUTED ASSIGNMENT: MAB-BASED METHOD

As the broadcast channels establish as well as terminate
frequently, and the network condition varies with time, a real-
time assignment is necessary for quick decision making to
deal with the broadcast channel dynamic. Due to the time-
consuming computation of global optimization, the central-
ized assignment cannot guarantee fast response of a newly
established channel. In this way, we design a distributed
assignment method for broadcasters when a broadcast channel
is established. The assignment is made by the broadcast device
and relays in a distributed two-phase manner. In phase I,
the broadcaster uses MAB-based method for relay assignment
based on the historical network performance. In phase II,
the relay forwards the streaming to the optimal upServer based
on instant relay load. The reason that we use MAB method is
that it can characterize the network performance in the time-
variant condition.

A. Phase I: Broadcaster Local Assignment

1) Multi-Armed Bandit Problem: The MAB problem [7]
models an agent with historical information taking action
repeatedly in order to maximize the accumulated reward.
It works in an exploration and exploitation way, i.e., taking the
currently best action as well as acquiring new information. The
classic MAB problem considers a bandit with F arms, whose
expected rewards are i.i.d. over time. At each time slot, one
arm is pulled and the bandit yields a reward. The problem
is to decide which arm to pull at each time slot in order to

maximize the accumulated expected reward over time. An arm
is more reliable if it is pulled more times, while pulling an
arm with higher expected rewards introduces higher reward.
Ideally, we want to pull the arms with reliable information and
high expected rewards. Hence, there is a tradeoff between the
exploration of new arms (i.e., pulling an more times to derive
accurate estimation of the mean rewards) and the exploitation
of known arms (i.e., obtaining higher rewards).

We can see a natural mapping between the MAB problem
and the relay selection problem for broadcasters. Like MAB,
each time when a broadcast channel is established and uses a
relay (i.e., pull a bandit), we can observe the induced network
cost (i.e., reward). Our goal is to minimize the overall network
cost (i.e., reward maximization). Threr are many algorithms for
the MAB problem. Reference [21] shows that no policy can
achieve an asymptotic regret smaller than O(log(t)). In this
way, we select a policy proposed in [22], i.e., the upper
confidence bounds (UCB), which is proven to achieve a regret
on the order of O(log(t)).

2) MAB for Relay Selection: For a particular broadcaster
b, our goal is to select a relay with the lowest cost. As the
network condition is highly dynamic, the goal for relay
selection is to reach a balance between exploring new relays
and exploiting the currently optimal relay. The UCB method
considers both how close the choice is to optimality and the
skewness historical selection. In this way, the algorithm will
explore the relay nodes which are seldom used and exploit the
current optimal relay selection scheme.

Formally, we define the MAB problem for each broadcaster
as follows. Recall that R∗ is the set of relay options and s(b, r)
is the expected network cost when using r as the relay option.
We denote A ∈ R∗ as the selected relay, Q(A) as the estimated
action value when performing A and R as the actual value
after acting A. In our scenario, R can be measured as the
network cost s(b, r). Furthermore, we denote N(A) as the
number that a relay node has been chosen before. The relay
selection scheme is based on both the estimated value Q(r)

and the exploring factor
√

log t
N(r) , where t is the number of

historical relay selections. We treat the weighted combination
of the two factors as the objective function:

A = arg min
r

Q(r)+ c

√
log t

N(r)
, c < 0. (16)

Different from the classical MAB problem aiming to maximize
the overall reward, we aim to minimize the network cost
s(b, r) in our context. Q(A) is updated by adding 1

N(A) (R −
Q(A)) after choosing A as the action. Algorithm 2 shows our
approach. Note that when we apply the MAB-UCB method
to select the optimal bandwidth, we maximize the expected
bandwidth as in the classical problem.

B. Phase II: Relay Local Assignment

In Phase I, a newly launched broadcast channel will be
relayed directly to the upServer or the relay. Once a channel
is forwarded to a relay, a further decision should be made
as to which upServer to assign. This decision is made by
the relay node that the streaming is assigned to based on the

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2121

Algorithm 2 Multi-Armed Bandit With Upper-Confidence-
Bound
1: procedure MAB-UCB(b, R∗, A)
2: I. Initialization
3: t ← 1
4: for r = 1 to R∗ do
5: Q(r)← 0
6: N(r)← 0
7: end for
8: II. Recursion
9: A← arg minr Q(r)+ c

√
log t
N(r)

10: R← bandi t (A)
11: t ← t + 1
12: N(A)← N(A)+ 1
13: Q(A)← Q(A)+ 1

N(A) (R − Q(A))
14: end procedure

link capacity between the relay node and the upServers and
work load on the upServers. The relay can obtain the optimal
solution of upServer selection by computing the potential cost
when selecting different upServers. The relay can filter all
available links whose capacity is larger than the streaming
bitrate and choose the link with the best network performance.

VI. EXPERIMENT RESULT

A. Experiment Setup

In order to validate the optimality and the processing
efficiency of the proposed algorithms, we set up an evaluation
environment based on the real-trace. We select 1000 broad-
casters from the Inke.tv data trace, i.e., B = 1000, whose
bitrates range from 1Mbps to 3Mbps, and set U = 4 as the
upServer number. We also set the computing limitation of each
upServer is 2,000 Mbps, the default relay number as 100,
i.e., R = 100, and the default α as 0.4. We collected the dataset
of smart routers in Beijing City, and treat the routers as the
relay servers. The dataset contains the router ID, the location,
and the network performance. After deriving the performance
of the algorithms in the simulation environment, we run the
real-world experiment on the whole Inke.tv dataset, aiming to
evaluate the potential performance improvement on the real
system.

We implement six methods of centralized assignment for
comparison, i.e., RANDOM, VDN-C, TOP-N, GRA, FGRA,
OPT. RANDOM is assigning channels to upServers randomly
without the aid of relay network. VDN-C [23] is a centralized
assignment method to allocate resource optimally in the live
streaming system without relay network, and serves as the
baseline. TOP-N uses the relay network and assigns the broad-
casters sequentially by the popularity of channels. TOP-N also
serves as the baseline, which is an intuitive assignment method
for the relay assignment. OPT is the theoretically optimal
solution of the relay assignment problem. We implement three
distributed methods, i.e., Static, Greedy, UCB. The “Static”
method chooses the same relay all the time. The “Greedy”
method selects the currently optimal relay based on historical
data.

Fig. 14. Normalized Cost of different algorithms.

Fig. 15. Normalized Cost versus relay number.

Fig. 16. Cost, delay, and loss rate with α.

B. Simulation Results

In order to simplify the analysis, we normalize the cost
of viewers to the range from 0 to 1 by dividing the network
cost of the RANDOM algorithm. We now present the viewers’
normalized costs under five methods in Fig. 14. We notice
that with the implement of the relay network, the viewer cost
can be reduced by 25% ∼ 43%, as the VDN-C method has
the highest cost, delay, and loss rate. Recall that the cost
is the QoE loss of all viewers. The OPT method has the
lowest cost and is regarded as the optimal baseline. TOP-N
method induces the highest cost in relay-based methods. The
costs of GRA and FGRA are very close, and the cost of
FGRA is slightly higher that GRA. This suggests that the
heuristics do not cause much accuracy loss. Compared with
OPT, GRA incurs only 3% more cost, and FGRA incurs 8%
more cost. Meanwhile, TOP-N incurs 25% more cost than the
OPT method.

We show the viewer cost versus relay number in Fig. 15,
where we randomly remove some relays and calculate the

2122 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

TABLE IV

TOTAL COST VERSUS PERIOD OF CENTRALIZED ASSIGNMENT

Fig. 17. Iteration processes of the MAB algorithm for link capacity and
latency selection. (a) Iteration process in distributed assignment to maximize
link capacity. (b) Iteration process in distributed assignment to minimize
latency.

total cost of viewers. As the relay is not used in the VDN-C
algorithm, the network cost of VDN-C remains the same.
Other relay-based algorithms can achieve lower cost when
more relay nodes are employed because broadcasters have a
larger probability to find a cost-efficient relay path with more
relays. Both the GRA and FGRA algorithms can reach 95%
of the performance of the OPT method.

Furthermore, we discuss the cost, delay, and loss rate versus
α in Fig. 16, and the employed algorithm is FGRA. In reality,
the value of α can be arbitrarily set to balance the weights
of the multiple objectives: low latency and low loss rate. For
example, when a low delay is expected, we can set a larger
value for α to improve the weight of delay. We notice that
with the increase of α, the transmission delay decreases and
the loss rate increases.

We show the total cost as a function of the refresh period
of the centralized assignment. Table. IV show the total cost
with the deployment of only the centralized assignment under
different refresh period. For the fair comparison, the total cost
is calculated in a day based on the same set of broadcasts and
views. We observe that the finer granularity results in higher
cost reduction. Note that in reality, the period should be set
considering the trade-off between the cost reduction and the
computation overhead.

Next, we investigate the performance of the MAB algorithm
in the distributed relay selection. We show the performance
under different iteration times of different distributed assign-
ment algorithms in Fig. 17(a) and Fig. 17(b), respectively.
We have two key observations: First, we find that the MAB-
based method outperforms baselines significantly, i.e., MAB
method can improve the average link capacity by 140%
compared to the greedy algorithm, and the average link
capacity can reach 1270 kbps. MAB can also lower the
transmission latency by 27% compared to baselines. Second,
the convergence of the MAB algorithm is relatively fast.
The MAB algorithm converges in around 100 iterations both
in finding the maximal bandwidth and the lowest latency.

Fig. 18. Experimental results on a typical day of the Inke dataset. (a) Total
cost in a day. (b) Rebuffer number in a day.

Also, MAB requires smaller iteration numbers to outperform
the baselines: MAB outperforms baselines in 20 iterations for
high bandwidth and in 75 iterations for low latency.

C. Real-Trace Experiment

We investigate the total cost of the Inke.tv platform in a
typical day with different methods in Fig. 18(a). For fairness
comparison, we set the refresh period as 30 minutes for all
methods. As the VDN-C method do not utilize the relay
network, the VDN-C method induces the highest cost of all
time and serves as the benchmark. Deploying only the Cen-
tralized assignment method (we choose FGRA for practical
consideration) induces lower cost than VDN-C. The hybrid
assignment method utilizing centralized method (FGRA) and
distributed method (UCB) achieves the best performance.
Comparing with the pure FGRA, the gap of cost enlarges
during peak demand and reaches 20% cost reduction. This is
because in peak demands, the dynamic of broadcast channels
increase, thus more new-launched broadcast channels will
be assigned by distributed assignment. The hybrid method
outperforms the VDN-C method by 40% in cost reduction. We
further investigate the viewer rebuffer behavior based on the
measurement result provided in Section II, from which we can
infer the rebuffer number in a broadcast channel by broadcaster
uploading latency. Specifically, we can compute the uploading
latency for each channel, and estimate the viewer rebuffer
number based on equation (1). Then we sum up the estimated
rebuffer number of all broadcast channels to derive the total
rebuffer number in the system. Note that the rebuffer number
estimation for each channel may not be accurate, while accord-
ing to the law of large numbers, the rebuffer number estimation
of the whole system is convincing. We provide the rebuffer
number on the same day with different methods in Fig. 18(b).
We find the viewer rebuffer number will decrease dramatically
when the relay-based methods are utilized. We find that a
great portion of rebuffers occur in the peak hours, and the
FGRA method can decrease the rebuffer number by 40%.
In addition, we find the Hybrid method (FGRA+distributed
assignment) can further decrease the rebuffer number by 10%,
as the distributed assignment can select a better path when the
channel is established, thus benefiting the earliest viewers to
the channel.

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2123

TABLE V

PROCESSING TIME VERSUS RELAY NUMBER

TABLE VI

PROCESSING TIME VERSUS BROADCASTER NUMBER

D. Processing Time Analysis

Above results indicate the relay network is notable for
reducing the total cost and viewer rebuffer time. As a real-
world online implementation, another important metric is the
time consumption in scheduling. On one hand, the network
condition shifts quickly, thus scheduling should be refreshed
in a few minutes. On the other hand, the number of broad-
casters and relays may be very large in reality, challenging
the processing speed. We realize the centralized assignment
algorithm in C++ for fast implementation. Then we present
the processing time of different methods with the number of
relay and broadcaster in Table. V and Table. VI, respectively.
We find that the processing time of FGRA is 100x∼1000x
faster than GRA. It takes about 39 seconds to finish the
assignment process when the broadcaster number reaches
100, 000. The running time measurement result was conducted
on a desktop with Intel Core i7-6700 CPU @ 2.6 GHz x 4.

VII. RELATED WORK

A. Live Streaming System Optimization

With the growing popularity among users, CLS has also
attracted attention from the academia. Reference [24] and [25]
conducted measurement study on live streaming systems like
Meerkat and Periscope, and found that nowadays the typ-
ical live streaming service employs CDN to deliver con-
tents. Many previous works focus on the optimization of

the live streaming system. Mukerjee et al. [23] designed a
hybrid controller to improve the performance of the CDN,
and further used a centralized algorithm for live video opti-
mization. Wu et al. [26] proposed a collaborative transcod-
ing strategy for live streaming. Chen et al. [27] presented a
generic framework that facilitates a cost-effective cloud service
for crowdsourced live streaming. Wang et al. [28] proposed
CALMS, which adaptively leases and adjusts cloud server
resources. He et al. [17] introduced a framework that utilized
cloud computing services to enhance the viewer satisfaction
and allocate the geo-distributed computing resources. Ref-
erence [29] forecasted highlight in video game streaming
to assist in bitrate adaptation. Reference [30] aimed to use
scalable video coding in mobile devices for live streaming
uploading. Although the authors try to solve the uploading
problem, they focused on the end device, and did not try to
improve the network quality from the device to the server.
Gao et al. [31], [32] investigated the video transcoding in the
cloud.

Most above mentioned works on live streaming focus on
the optimization of the cloud network [17], the intra-CDN
link [23], and the uploading device end [30]. None of the
works focus on the optimization of the first-mile upload
network. While, measurement study in [8] showed that the
dynamic uploading capacity of broadcasters is a critical chal-
lenge, which noticeably affects the smoothness for viewers.
Reference [33] conducted data measurement on YouTube Live
and Twitch, and found numerous unique uploaders can guar-
antee 24/7 service. Reference [34] implemented a broadcaster
uploading system based on the HTTP protocal, from which we
observe that the uploading path is essential for better video
quality and lower latency. This inspires us to design novel
architecture to improve the first-mile network.

B. Relay Network for Better Quality

Relay network has been applied in many scenarios, such
as virtual private networks (VPNs) and multicast [35], [36].
Savage et al. [10] found that in 30-80% of the cases, there is
an alternate path with significantly superior quality. During
last few years, relay network has been used in novel net-
work applications like Internet Telephony and live streaming.
Jiang et al. [11] presented overlay network to improve the
quality of internet telephony call. They used data analysis and
machine learning methods to probe the network condition and
schedule the relay decision. Zhang et al. [37] designed a data-
driven overlay network to improve live streaming quality. They
use the relay network in the P2P and server-client scenarios.
However with the advent of CLS, employing the relay network
to optimize the first-mile upload network in CLS system is
more important. Reference [38] designed an optimal relay
selection algorithm for the wireless relay network.

VIII. CONCLUSION

In this paper, we perform measurement on a large-scale CLS
dataset, and the results show that the first mile network causes
the viewer QoE degradation. Motivated by this, we design a
relay-assistant network for content harvesting in the first mile

2124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

network for crowdsourced live streaming. We use a hybrid
solution, i.e., joint centralized and distributed assignment,
to perform the relay assignment. We model the centralized
relay assignment as an optimization problem and developed
an optimal algorithm and a fast approximation algorithm.
We utilize the MAB-based method to perform the distributed
assignment locally. The performance of the proposed solution
is evaluated through extensive experiments.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2016–2021,” Cisco, San Jose, CA, USA, White Paper, 2016.

[2] (2018). Inke.tv. [Online]. Available: http://www.inke.tv/
[3] J. He, D. Wu, Y. Zeng, X. Hei, and Y. Wen, “Toward optimal deployment

of cloud-assisted video distribution services,” IEEE Trans. Circuits Syst.
Video Technol., vol. 23, no. 10, pp. 1717–1728, Oct. 2013.

[4] H. Pang, Z. Wang, C. Yan, Q. Ding, and L. Sun, “First mile in
crowdsourced live streaming: A content harvest network approach,” in
Proc. Thematic Workshops ACM Multimedia, 2017, pp. 101–109.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[6] L. Chen, Y. Zhou, M. Jing, and R. T. B. Ma, “Thunder crystal:
A novel crowdsourcing-based content distribution platform,” in Proc.
25th ACM Workshop Netw. Oper. Syst. Support Digit. Audio Video, 2015,
pp. 43–48.

[7] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[8] C. Zhang and J. Liu, “On crowdsourced interactive live streaming:
A Twitch.tv-based measurement study,” in Proc. 25th ACM Workshop
Netw. Oper. Syst. Support Digit. Audio Video, 2015, pp. 55–60.

[9] M. Ma, Z. Wang, K. Su, and L. Sun, “Understanding content placement
strategies in smartrouter-based peer video CDN,” in Proc. 26th Int.
Workshop Netw. Oper. Syst. Support Digit. Audio Video, 2016, p. 7.

[10] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The end-
to-end effects of Internet path selection,” SIGCOMM Comput. Commun.
Rev., vol. 29, no. 4, pp. 289–299, Aug. 1999.

[11] J. Jiang et al., “Via: Improving Internet telephony call quality using
predictive relay selection,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 286–299.

[12] M. Li, Y.-L. Wu, and C.-R. Chang, “Available bandwidth estimation for
the network paths with multiple tight links and bursty traffic,” J. Netw.
Comput. Appl., vol. 36, no. 1, pp. 353–367, 2013.

[13] A. Ganjam et al., “C3: Internet-scale control plane for video quality
optimization,” in Proc. NSDI, vol. 15, 2015, pp. 131–144.

[14] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the
quality of experience of HTTP video streaming,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), May 2011, pp. 485–492.

[15] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization
framework for QoS-enabled adaptive video streaming over OpenFlow
networks,” IEEE Trans. Multimedia, vol. 15, no. 3, pp. 710–715,
Apr. 2013.

[16] Q. He, C. Zhang, and J. Liu, “Utilizing massive viewers for video
transcoding in crowdsourced live streaming,” in Proc. IEEE 9th Int.
Conf. Cloud Comput. (CLOUD), Jun./Jul. 2016, pp. 116–123.

[17] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous video
contributors and viewers in crowdsourced live streaming: A cloud-
based approach,” IEEE Trans. Multimedia, vol. 18, no. 5, pp. 916–928,
May 2016.

[18] Z. Wang, L. Sun, C. Wu, W. Zhu, and S. Yang, “Joint online transcoding
and geo-distributed delivery for dynamic adaptive streaming,” in Proc.
IEEE INFOCOM, Apr./May 2014, pp. 91–99.

[19] P. Raghavan and C. D. Tompson, “Randomized rounding: A technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[20] V. Klee and G. J. Minty, “How good is the simplex algorithm,” Dept.
Math., Univ. Washington, Seattle, WA, USA, Tech. Rep. AD0706119,
1970.

[21] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[23] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang,
“Practical, real-time centralized control for CDN-based live video
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 311–324, 2015.

[24] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Y. Zhao, “Anatomy
of a personalized livestreaming system,” in Proc. Internet Meas. Conf.,
2016, pp. 485–498.

[25] M. Siekkinen, E. Masala, and T. Kämäräinen, “A first look at quality
of mobile live streaming experience: The case of periscope,” in Proc.
Internet Meas. Conf., 2016, pp. 477–483.

[26] J.-C. Wu, P. Huang, J. Yao, and H. H. Chen, “A collaborative transcoding
strategy for live broadcasting over peer-to-peer IPTV networks,” IEEE
Trans. Circuits Syst. Video Technol., vol. 21, no. 2, pp. 220–224,
Feb. 2011.

[27] F. Chen, C. Zhang, F. Wang, J. Liu, X. Wang, and Y. Liu, “Cloud-
assisted live streaming for crowdsourced multimedia content,” IEEE
Trans. Multimedia, vol. 17, no. 9, pp. 1471–1483, Sep. 2015.

[28] F. Wang, J. Liu, M. Chen, and H. Wang, “Migration towards cloud-
assisted live media streaming,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 272–282, Feb. 2016.

[29] W.-T. Chu and Y.-C. Chou, “On broadcasted game video analysis: Event
detection, highlight detection, and highlight forecast,” Multimedia Tools
Appl., vol. 76, no. 7, pp. 9735–9758, 2017.

[30] M. Siekkinen, E. Masala, and J. K. Nurminen, “Optimized upload
strategies for live scalable video transmission from mobile devices,”
IEEE Trans. Mobile Comput., vol. 16, no. 4, pp. 1059–1072, Apr. 2017.

[31] G. Gao, H. Hu, Y. Wen, and C. Westphal, “Resource provisioning
and profit maximization for transcoding in clouds: A two-timescale
approach,” IEEE Trans. Multimedia, vol. 19, no. 4, pp. 836–848,
Apr. 2017.

[32] G. Gao, W. Zhang, Y. Wen, Z. Wang, and W. Zhu, “Towards cost-
efficient video transcoding in media cloud: Insights learned from
user viewing patterns,” IEEE Trans. Multimedia, vol. 17, no. 8,
pp. 1286–1296, Aug. 2015.

[33] K. Pires and G. Simon, “YouTube live and Twitch: A tour of user-
generated live streaming systems,” in Proc. 6th ACM Multimedia Syst.
Conf., 2015, pp. 225–230.

[34] B. Seo, W. Cui, and R. Zimmermann, “An experimental study of video
uploading from mobile devices with HTTP streaming,” in Proc. 3rd
Multimedia Syst. Conf., 2012, pp. 215–225.

[35] Y. Xu, D. Hu, and S. Mao, “Relay-assisted multiuser video streaming
in cognitive radio networks,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 10, pp. 1758–1770, Oct. 2014.

[36] J. Tang, W. P. Tay, and Y. Wen, “Dynamic request redirection and
elastic service scaling in cloud-centric media networks,” IEEE Trans.
Multimedia, vol. 16, no. 5, pp. 1434–1445, Aug. 2014.

[37] X. Zhang, J. Liu, B. Li, and Y.-S. P. Yum, “CoolStreaming/DONet:
A data-driven overlay network for peer-to-peer live media stream-
ing,” in Proc. IEEE 24th Annu. Joint Conf. IEEE Comput. Commun.
Soc. (INFOCOM), vol. 3, Mar. 2005, pp. 2102–2111.

[38] D. Yang, X. Fang, and G. Xue, “OPRA: Optimal relay assignment
for capacity maximization in cooperative networks,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2011, pp. 1–6.

Haitian Pang (S’16) received the B.E. degree from
the Department of Automation, Tsinghua Univer-
sity, Beijing, China, in 2014, where he is currently
pursuing the Ph.D. degree in computer science.
His research areas include network game modeling,
cellular-WiFi networking, video streaming system
design, and mobile networking optimizations.

PANG et al.: CHN: OPTIMIZING FIRST MILE FOR CLS 2125

Zhi Wang (S’10–M’14) received the B.E. and Ph.D.
degrees in computer science from Tsinghua Univer-
sity, Beijing, China, in 2008 and 2014, respectively.
He is currently an Assistant Professor with the
Graduate School at Shenzhen, Tsinghua University.
His research areas include online social networks,
mobile cloud computing, and large-scale multimedia
systems. He is a recipient of the ACM Multime-
dia Best Paper Award (2012), the China Computer
Federation (CCF) Outstanding Doctoral Dissertation
Award (2014), and the MMM Best Student Paper
Award (2015).

Chen Yan received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2015, where he is currently
pursuing the master’s degree. His research interests
include data mining, and computer vision and their
applications in urban computing.

Qinghua Ding is currently pursuing the bachelor’s
degree with the Multimedia and Networks Labora-
tory, Tsinghua University. He is a Student Research
Fellow (SRT student) Multimedia and Networks
Laboratory, Tsinghua University. His research inter-
ests include game theory and network economics,
optimization of computer networks, and artificial
intelligence. He has published some articles on the
ACM MM, the IEEE ICC, and the IEEE Globecom.

Kun Yi received the B.S. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2017, where he is currently
pursuing the master’s degree.

Jiangchuan Liu (S’01–M’03–SM’08–F’17) was an
Assistant Professor with The Chinese University of
Hong Kong, and a Research Fellow at Microsoft
Research Asia. He is an EMC-Endowed Visiting
Chair Professor with Tsinghua University, Beijing,
China, and also an Adjunct Professor of Tsinghua-
Berkeley Shenzhen Institute. He is currently a Uni-
versity Professor with the School of Computing
Science, Simon Fraser University, Burnaby, BC,
Canada. He is an NSERC E.W.R. Steacie Memorial
Fellow.

He received the B.Eng. degree (cum laude) from Tsinghua University,
Beijing, China, in 1999, and the Ph.D. degree from The Hong Kong University
of Science and Technology in 2003, both in computer science. He is a co-
recipient of the inaugural Test of Time Paper Award of the IEEE INFOCOM
(2015), the ACM SIGMM TOMCCAP Nicolas D. Georganas Best Paper
Award (2013), and the ACM Multimedia Best Paper Award (2012).

His research interests include multimedia systems and networks, cloud
computing, social networking, online gaming, big data computing, RFID,
and Internet of things. He is a Steering Committee Member of the IEEE
TRANSACTIONS ON MOBILE COMPUTING and the Steering Committee Chair
of the IEEE/ACM IWQoS (2015–2017). He has served on the editorial
boards of the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE
TRANSACTIONS ON BIG DATA, the IEEE TRANSACTIONS ON MULTIMEDIA,
the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and the IEEE
INTERNET OF THINGS Journal.

Lifeng Sun (M’05) received the B.S. and Ph.D.
degrees in system engineering from the National
University of Defense Technology, Changsha, China,
in 1995 and 2000, respectively. He was a Post-
Doctoral Fellow from 2001 to 2003, an Assistant
Professor from 2003 to 2007, and an Associate
Professor from 2007 to 2013 with the Department
of Computer Science and Technology, Tsinghua
University, where he is currently a Professor. His
research interests lie in the areas of online social net-
work, video streaming, interactive multi-view video,

and distributed video coding. He is a member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

