
Livesmart: a QoS-Guaranteed Cost-Minimum Framework of
Viewer Scheduling for Crowdsourced Live Streaming

Rui-Xiao Zhang∗, Ming Ma‡+, Tianchi Huang∗, Haitian Pang∗, Xin Yao∗

Chenglei Wu∗, Jiangchuan Liu†, Lifeng Sun§+
∗ Department of Computer Science and Technology, Tsinghua University

§ BNRist, Department of Computer Science and Technology, Tsinghua University
‡ Beijing Kuaishou Technology Co., Ltd., China

† Simon Fraser University
∗ {zhangrx17,htc19,pht14,wucl18,yaox16}@mails.tsinghua.edu.cn
maming@kuaishou.com, jcliu@cs.sfu.ca, sunlf@tsinghua.edu.cn

ABSTRACT
Viewer scheduling among different CDN providers in crowdsourced
live streaming (CLS) service is especially challenging due to the
large-scale dynamic viewers as well as the time-variant perfor-
mance of the content delivery network. A practical scheduling
method should tackle the following challenges: 1) accurate model-
ing of viewer patterns and CDN performance; 2) intelligent work-
load offloading to save costs while guaranteeing the quality of
service (QoS); 3) and ease of integration with practical CDN infras-
tructure in CLS platforms.

In this paper, we propose Livesmart, a novel framework that fa-
cilitates a QoS-guaranteed cost-efficient approach for CLS services.
Specifically, we address the first challenge by carefully designing
deep neural networks which make Livestream capture the envi-
ronment dynamics without any presumptions; we then tackle the
second challenge by leveraging the Model Predictive Control (MPC)
method which enables Livesmart to make decisions in a long-term
way. For the last challenge, we propose a probability shift model
based on the realistic CLS delivery structure, thus empowering
Livesmart to be practically deployed. We collect real-world data
in cooperation with Kuaishou, one of the largest CLS platform in
China, and evaluate Livesmart with trace-driven experiments. Com-
paring with prevalent methods, Livesmart can significantly reduce
the CDN bandwidth costs (24.97%-63.45%) and improve the average
QoS (5.79%-7.63%).

CCS CONCEPTS
• Information systems → Multimedia streaming; • Computing
methodologies → Neural networks.

+ Lifeng Sun and Ming Ma are the corresponding authors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3351013

KEYWORDS
content delivery networks, crowdsourced live streaming, neural
networks

ACM Reference Format:
Rui-Xiao Zhang∗, Ming Ma‡+, Tianchi Huang∗, Haitian Pang∗, Xin Yao∗
and Chenglei Wu∗, Jiangchuan Liu†, Lifeng Sun§+. 2019. Livesmart: a QoS-
Guaranteed Cost-Minimum Framework of Viewer Scheduling for Crowd-
sourced Live Streaming. In Proceedings of the 27th ACM International Con-
ference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3343031.3351013

1 INTRODUCTION
Recent years have witnessed great development in crowdsourced
live streaming (CLS). In CLS scenarios, any general user can broad-
cast his/her contents to numerous viewers, and viewers will en-
joy the streaming entertainment with different devices (a Mobile
phone, an iPad, or a personal computer). Many platforms like
Youtube.game, Twitch.tv and Kuaishou.com have shown unprece-
dented growth across the world.

To guarantee the viewer engagement, content delivery network
(CDN) has been a fundamental support network structure for CLS
platforms [2]. Moreover, since one single CDN may suffer perfor-
mance fluctuation, multiple CDN (multi-CDN) structure has been
accepted by more leading platforms [3, 4]. However, the emerging
demand for live contents has presented enormous challenges to CLS
platforms: on the one hand, since the performance of different CDN
providers are both time-variant and workload-related (§3.1), plat-
forms need to dynamically schedule viewers to satisfy the growing
demand for higher quality of viewing experience; on the other hand,
platforms also need to deliver videos in a more cost-efficient way
to make more profits. To guarantee QoS while trimming costs, how
to intelligently schedule users to highly dynamic CDN providers
has been a critical problem for platforms.

Different from well-prepared traditional live streaming (such as
TV channels and sports), the following features make CLS schedul-
ing more complicated. First, viewers in CLS scenario are equipped
with more randomization: any broadcaster can suddenly become
a celebrity, which can cause a burst of viewers watching him/her
(also denoted as flash crowd [23]). Such a highly dynamic viewing
pattern, if not well identified, can result in both cost-inefficiency

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

420

https://doi.org/10.1145/3343031.3351013
https://doi.org/10.1145/3343031.3351013

and QoS degradation (§3.2). Second, the viewers are much more sen-
sitive to delay and jitter: CLS viewers not only watch the streaming
but also participate by interacting with broadcasters [17, 23]. Due
to that switching CDN can lead to viewer side buffer and even fail-
ure (e.g., DNS resolution failure or HTTP redirection failure), this
actually requires that the platform shouldn’t proactively reschedule
the viewers who are being served and can only control the new
viewers.

There have been abundant approaches proposed in recent years
focusing on CLS delivery optimization, which unfortunately, can-
not handle all the above features. On one hand, most of them
only focus on improving user engagement regardless of delivering
costs [11, 12], which inevitably results in economic inefficiency. On
the other hand, some studies schedule viewers by applying simpli-
fied environment settings (e.g., ignoring the temporal dynamics of
CDNs and viewers), which fails to get the optimal decision under
the real-world conditions [13, 21]. Moreover, since neither of the
previous methods pays attention to the unschedulability of the re-
maining viewers featured by CLS services, they cannot be directly
deployed by CLS platforms.

To tackle the above problems, we propose Livesmart, a novel
framework that focuses on viewer scheduling for CLS platforms.
Different from previous work, Livesmart is enabled with the fol-
lowing properties.

Accurate dynamicsmodeling: Previouswork is based on static
network settings, while it is dynamic in reality. So what is essential
is to describe the dynamics from both viewer side and CDN side.
To tackle this challenge, we propose to use deep neural networks
(DNNs) to characterize the dynamics of them. Specifically, since
DNN can predict with almost raw input data, our models can well
accommodate the heterogeneity among different CDN providers
and also different viewer patterns. Moreover, inspired by the simi-
larity between the “data-extra prediction” problem and CLS viewer
prediction problem, we propose to use an advanced neuron unit to
build up DNN models. By carefully designing the DNN structure,
we demonstrate that our model works well.

Effective and economical scheduling: Building on insights
from the system control theory, we formulate the QoS-guarantee
cost-minimum problem, and propose that model predictive control
(MPC) [18] is a suitable algorithm that can optimally combine the
prediction results of prediction models and the feedback signals
of each decision. Specifically, after receiving a series of decisions,
Livesmart predicts the expected QoS and costs for the next few
time steps and uses them to generate an optimal decision.

Ease of deployment: Instead of modifying the existing deliver-
ing structure, or relying on additional technique support from CDN
providers and CLS platforms, Livesmart is designed to be seamlessly
integrated into real-world CLS platforms by modeling remaining
viewers through a probability-based dynamic shift model.

In summary, the main contributions of this paper are three-fold:
1) We conduct large-scale measurement to get insights into CLS
viewer scheduling. Specifically, to the best of our knowledge, we
are the first to concern the influence of remaining viewers in CLS
services. 2) We propose Livesmart, a novel framework that focuses
on the CLS viewer scheduling. By harmonizing the mathematical
methods and deep learning methods, Livesmart is both effective
and deployable. 3) Through extensive trace-driven experiments,

we demonstrate that Livesmart can significantly reduce the costs
(24.97%-63.47%) and improve the QoS (5.79%-7.63%) at the same
time.
2 RELATEDWORK
With the growing popularity among users, how to improve viewer
engagement in CLS scenarios has received great interests. Many
of them focus on system optimization. For example, [23] proposes
a network optimizer which can collaborate the CDN and edge de-
vices. [5, 7, 9, 20] facilitate some cloud-assisted frameworks which
optimize the content delivery by adaptively leveraging cloud ser-
vices. At the same time, some of them also focus on other aspects.
For example, [22, 26] concern about transcoding efficiency, and [16]
aims at optimizing the first-mile transmission in CLS scenarios.
However, due to all of them focus on the new delivery structure
which needs additional technique support from CDN providers or
platforms, they cannot be directly used in nowadays CLS services.

At the same time, multi-CDN has been a fundamental struc-
ture for nowadays video delivery platforms [2]. Previous work
has shown that in most cases, the configuration ratio across differ-
ent CDN providers is fixed regardless of the dynamics from CDN
providers or viewers. To alleviate these problems, a lot of work has
focused on dynamic viewer scheduling. For example, [3, 4, 11, 14]
propose model-based methods which update their model through
historical data and use the prediction of CDN performance to
guide scheduling strategy, while [12] uses exploration-exploitation
method to online measure CDN performance and schedule view-
ers in a real-time way. However, due to that these methods only
consider optimizing the viewer engagement, they can result in
economic inefficiency.

Although somework indeed considers the CDN performance and
delivery costs, they all simplify the environment settings whichmay
result in suboptimal solutions and separates them from practical
deployment. For example, [13] ignores the time-series dynamics of
CDN providers, while [21] overlooks the influence of flash crowds,
and neither of them pays attention to the impact of remaining
viewers. Different from them, Livesmart systematically considers
the dynamics from CDNs and viewers. Specifically, by modeling
the remaining viewers, Livesmart can be seamlessly integrated into
nowadays CLS delivery structure. Besides, our method can also be
extended to the cloud provider selection problem [15], in which
both the job workload and cloud performance are dynamic.

3 MOTIVATION
3.1 The dynamics of CDN providers
We first profile the dynamics of different CDN providers, and we
select out the data from the same group1. We take stalling frequency
as the performance evaluation metric. (For paper consistence, the
data used in this paper are described in 6.1) The definition of stalling
frequency is the average number of stalling events2 experienced by
viewers, and as it increases, the QoS degrades. We first measure
the average stalling frequency of each CDN in the process of time,
and present the results in the upper part of Figure 1. As shown,

1Same group means the viewers/CDN in the same region and use same ISP (Internet
Service Provider)
2A stalling event happens only when there is no data in playback buffer, and the video
has to be paused until the next frame.

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

421

0 5 10 15 20 25 30

Time / min

0.14

0.16

0.18

0.2

S
ta

lli
n
g
 f
re

q
u
e
n
c
y
 (

/1
0
0
s
)

CDN A

CDN B

CDN C

0 1 2 3 4 5

Viewers 10
4

0.2

0.4

0.6

0.8

S
ta

lli
n
g
 f
re

q
u
e
n
c
y
 (

/1
0
0
s
)

Figure 1: The dynamics of
CDN providers

0 50 100 150 200 250 300

Time / min

0

0.5

1

#
 V

ie
w

e
rs

 (
n

o
rm

a
liz

e
d

)

FCC NC

0 50 100 150 200 250 300

Time / min

0

0.5

1

#
 V

ie
w

e
rs

 (
n

o
rm

a
liz

e
d

)

FCC NC

Figure 2: Viewer access pat-
tern

Figure 3: Cost-inefficiency

0 10 20 30 40 50 60

Time / min

0.75

0.8

0.85

0.9

0.95

1

R
a

ti
o

 o
f

re
m

a
in

g
 v

ie
w

e
rs

Figure 4: Ratio of remaining
viewers

we can see that despite the same group, the QoS of different CDN
providers fluctuates drastically over time. For example, during [0
min, 15 min], the best CDN provider switches from CDN C to CDN
A and finally to CDN B. At the same time, we also observe that
different CDN providers also have different patterns. For example,
CDNB fluctuates most violently since it has the largest performance
range (from 0.158 to 0.194), while CDN A and CDN C are more
stable. Finally, we observe that the QoS is related to the workload
scheduled to it. The lower part of Figure 1 shows an example, and
we can see that with the number of concurrent viewers increases,
the average stalling frequency first keeps stable and then increases
significantly.

The above observations demonstrate that the CDN provider per-
formance is both time-variant and workload-related, and there is
also heterogeneity between different CDN providers. This can be
explained as different CDN providers have different offloading poli-
cies and server settings. Existingmethods prevalently simplify these
dynamics and may cause experience degradation when scheduling
viewers.

3.2 The dynamics of CLS viewers
Viewer access pattern We also investigate the viewer access pat-
terns in CLS scenarios. Similar to [23], we first divide all streaming
channels into two categories: the Flash Crowded Channel (FCC),
which represents the channel with a lot of arrivals in a short pe-
riod, and the Normal Channel (NC), which denotes other channels
except for FCC. We identify the FCC from NC according to 1) the
peak viewer number and 2) the peak growth rate. We present the
evolution of them in Figure 2 (as required by the data provider, we
normalize the viewer number), from which we have the following
observations. First, the crowds can significantly improve the total
viewer number. In the upper part of Figure 2, at about 150 min, the
viewer number of FCC takes up almost half of the overall workload.
Second, the crowds can appear at the off-peak time. For example,
also in the upper part of Figure 2, the FCC peak appears at 150 min,
while the peak load is at about 200 min. At the same time, in the
lower part of Figure 2, we also present the workload evolution in
the same period of another day. We can observe that in contrast
with the stable pattern of NC, even the same period, the pattern
of FCC also varies in different days. The above phenomena can be
explained: the most popular broadcaster can stream online at any
time of a day, therefore making the crowds appear irregularly.

Actually, these surging workload patterns will significantly in-
fluence the outcome of the scheduling decisions. For example, if we

don’t identify the coming crowd and still regard it as a regular pat-
tern, the scheduling strategy may schedule as much as workload to
the best-performance CDN to maximize the average QoS. However,
as denoted in Figure 1, too many viewers will overload the CDN
and violate its QoS, and the viewers scheduled to it will therefore
suffer experience degradation. In addition, the failure of identifying
the future workload can also result in the cost-inefficiency: Figure 3
shows an example: there are two CDN providers (denoted as CDN
A and CDN B), and if we regard the future workload is P1, then the
most economical way is to schedule all viewers to CDN A. However
the real workload is P2, and apparently scheduling all viewers to
CDN A will extend its actual costs to C3, which is less economical
than scheduling all viewers to CDN B (C2).

The influence of remaining viewers: To practically deploy a
scheduling framework for CLS platform, we can only control the
new viewers. Suppose a viewer is watching the session through a
certain CDN, if the platform switches the CDN at this time, it will
inevitably cause the streaming data interrupted or delayed. Since
viewers in live broadcasting are much more intolerant of the delay
and buffering[17], the real world platform will not proactively re-
schedule those viewers who are enjoying the streaming and only
schedule the new viewers. This actually complicates the scheduling
problem due to the following reasons. First, we cannot schedule
viewers only according the future one step performance prediction:
for example, at time step t , if we have known that CDN A performs
the best at time t + 1, then we assign viewers to CDN A at time step
t + 1. However, from t + 1 on, these viewers become the remaining
viewers and suffer engagement degradation if CDN A becomes
the worst in the next time steps. Second, we should consider the
remaining viewers if we want to precisely control the number of
concurrent viewers at each time step. This is important since both
the QoS (denoted in Figure 1) and costs (denoted in Figure 3) are
related to the concurrent workload instead of only new viewers.
Figure 4 shows an example. We can see that at the different time,
the remaining viewers take up a different ratio of total viewers. As
a result, we need to separate the new viewers from the remaining
viewers and consider the dynamics from both of them.

From the above analysis, we are motivated that an effective
scheduling approach for CLS should consider both the dynamics
from CDN providers and viewers. Especially, to make it more prac-
tical, the approach should also make decisions with consideration
of remaining viewers.

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

422

4 FORMULATION
Recall that our goal is to minimize the bandwidth costs of CDNs
while guaranteeing the QoS. The formulation consists of two parts:
the costs calculation and the QoS guarantee.

Cost calculation: Before calculating the overall costs, we first
give a brief introduction to the CDN pricing model. The pioneering
CDN providers such as Amazon E2, and Tencent CDN offer their
charging policies based on the following two strategies:

• volume-based charging. The charging policy is based on
the volume of total viewers, generated from a group of view-
ers during a certain period (e.g., one month);

• peak-based charging. The charging policy relies on the
peak workload of a group of viewers during a certain period.

At the same time, the charging policy also gives the platform a
quantitative discount, i.g., the larger the volume (the peak), the
lower the unit price you get. Specifically, since most platforms
adopt peak-based charging schemes [25], in this paper we also
assume that all CDN providers use peak-based charging policies
(It is worth noting that our method can still work in volume-based
charging).

The charging period is set asT (e.g., a month). For CDN providers,
we suppose there are total N CDN providers, and the i-the CDN
provider is denoted as CDNi . The overall costs of a platform are
associated with the peak load (or the volume) it consumes, and
we define the workload of CDNi at time step t iswi

t . At the same
time, we represent the charging model of CDNi as costi , which
is a function of peak load and in general is piecewise and non-
decreasing [10]. For convenience, we denote the peak at time t of
CDNi as Sit , which can be updated as:

Sit =

{
Sit−1 Sit−1 ≥ wi

t
wi
t Sit−1 < wi

t
(1)

Let x it denote the fraction of new viewers distributed to CDNi .
Therefore, the variable x it is the optimization variable, and at each
time, the workloadwi

t is updated as:

wi
t = w

i,r e
t +wnew

t ∗ x it (2)

in which wnew
t denotes the number of all new viewers at time t .

Eq. 2 means that at any time, wi
t are composed of the remaining

viewerswr e,i
t and new viewers scheduled to it. To this end, the costs

function will be defined as:

C =
N∑
i=1

costi (S
i
T) (3)

QoS guarantee: As the viewer engagement is paramount to the
platform, the scheduling decision should at the same time guaran-
tee the QoS requirement. In details, we represent the requirement
by introducing a threshold QoStarдet set by the platform. For ex-
ample, the QoS can be the stalling frequency, startup latency3 or
the combination of them. Notably, QoS is both time-variant and
workload-related, and different CDN providers have different QoS
patterns (Figure 1), so we denote QoS as QoSit (t ,w

i
t).

3a second-level metric, which represents the duration between a viewer requesting
the session and the video player getting enough data to play.

Figure 5: The system architecture of Livesmart. At each time
t , Livesmart will characterize the dynamics from CDN and
viewers, and then select the most proper distribution ratio
of different CDN providers (i.e., xat ,x

b
t ,x

c
t)

.To this end, we have formulated theQoS-guaranteed cost-minimum
optimization problem, in which the objective is to minimize the
overall usage costs of CDN providers:

minC =
N∑
i=1

costi (S
i
T) (4)

s .t .

1

T ∗N

N∑
i=1

T∑
t=1

QoSit (t ,w
i
t) ≥ QoStarдet

N∑
i=1

x it = 1,x it ≥ 0

(1), (2)

(5)

To solve the optimization problem, we should (1) characterize the
dynamics from both CDN providers and viewers due to that QoS
is time-variant and workload-correlated, and (2) make decisions
through a long-term plan since there are remaining viewers (Eq.(2))
which influence the outcomes of the decisions (§3.2).

5 SYSTEM OVERVIEW
The components of Livesmart are depicted in Figure 5. As shown,
Livesmart consists of three parts: theWorkloadManager , theQoS
Manager , and theOptimizer . At each time step t , given the action
x it (i.e., the distribution ratio between different CDN providers),
the workload manager can model the viewer dynamics and output
the future workload, which contains both new viewers (through
new viewer predictor) and remaining viewers (through dynamic
shift model). Then, after receiving a series of actions, the QoS man-
ager will predict the corresponding QoS (through QoS character-
izer). Finally, The Optimizer is responsible for selecting the optimal
distribution ratio considering the charging policies through MPC
optimizer.

5.1 Workload Manager
In this part, we develop a practical model to represent the dynamics
of CLS viewers. Inspired by [24], in which a probability model is
proposed to represent the mobile shift, we are also determined to
use the historical data to describe the temporal shift of viewers
to distinguish the remaining viewers and a deep neural network
(DNN) to predict the new viewers.

Dynamic shift model: We first present how to distinguish the
remaining viewers. To better illustrate the key idea of the model,
we present an example in Figure 6. As can be seen, the remaining
viewers ofCDNi at t0 are classified into two parts, the new viewers

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

423

Figure 6: The core design of dynamic shift mode.

0 2 4 6 8 10

Watching Duration / min

0

0.2

0.4

0.6

0.8

1

C
D

F

8AM - 9AM

8PM - 9PM

Figure 7: The CDF of watching duration in different period.

1) before tnow (solid line) and 2) after tnow (dash line). We first
modele how many remaining viewers at t0 are those who come
before tnow . For those after tnow , we can still use the same approach
after estimating the viewers between [tnow , t].

The staying duration is a key factor, as the viewers may depart
out of the target time step if the staying duration is too small.
Therefor, we use the variable Pt to denote the probability that the
viewers remaining at the target time, and the remaining viewers
can be formulated as

wi,r e = wi,new ∗ Pt (6)

It is notable that Pt is not only related to the target period but also
relates to the joining time. For example, we set the target time as t0,
then the appropriate staying duration for the new viewers allocated
to CDNi at t0 − 10 min should satisfy t > 10 min, while for those
who are allocated at t0 − 20 min, the feasible duration is t > 20 min.
To address this problem, we develop the following approximation
method.

As shown in Figure 6, we first discretize the time (e.g., 1 min)
with interval δ . We start by studying the new viewers allocated to
CDNi during [t ′, t ′ + δ], if they are still in CDNi in target time t0,
the feasible duration should be t > t0 − t ′. Therefore, we can get
the number of remaining viewers at target time t0 by accumulating
all the remaining viewers generated at each time interval before t0:

wi,r e
t0 =

∞∑
k=1

wi,new
tk P(t ≥ t0 − tk) (7)

in which tk represents the k − th interval before tnow , i.e., tk =
tnow − kδ . It is notable that both P(t ≥ t0 − tk) andw

i,new
tk can be

easily obtained from historical data.

Figure 8: A case study for data-extra problem. As denoted,
the model with NALU works better.

Figure 9: New viewer predictor

In fact, there is no need to calculate k from 0 to ∞. After the
measurement from our collected data, we find that the new viewers
usually keep staying one CDN for a short time, which indicates
that we can perform a temporal pruning to cut off the k .

We show the example in Figure 7, in which we present the cumu-
lative distribution function (CDF) of watching duration for viewers.
A straightful thought is to dynamically set k , which, however, may
lead to more computation overhead. So we are determined to use a
fixed k . As depicted, we find that about 90% of viewers will depart
within 10 min. Therefore, we only calculate Eq. (7) by setting k as
10 min. Remarkably, the staying duration is also correlated with the
period of the day (denoted in Figure 7). It is reasonable since there
will be more broadcasters in the evening, and viewers therefore
have more alternatives and are more likely to switch among them.
Therefor, we need to update the model every period, and in our
experiment, we update it every 1 hour.

New viewer predictor: After that, we need to estimate the new
viewers between [tnow , t], i.e., new viewer prediction. Specifically,
a good viewer prediction method need to address following two
important problems: 1) the ability of generalizing to different viewer
patterns, and 2) the ability to predict “unexpected” events.

To tackle the first problem, we are determined to use the DNN-
based prediction model. Instead of using any handcraft feature
engineering and data pre-processing, DNN can make prediction by
using almost “raw” data and thus being able to better generalize to
different input patterns.

For the second problem, it requires that the prediction model can
be empowered to foresee some unexpected events, or in other words,
the abnormal events. Back to the neural networks, it means that the
DNNmodel is expected to work still when inputting the data which
it seldom encounters in the training set. Traditional DNN structures
are incapable of addressing the second problem. Figure 8 shows
an example. We can see that long-short-term-memory (LSTM) net-
work, which is the most widely used DNN structure for time series

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

424

prediction, suffer performance degradation when inputting data
that lie outside of the numerical range during training.

Inspired by the most recent advantages in deep learning, we
use the Neural Arithmetic Logic Units (NALU) [19] as one of the
fundamental units in our prediction model. By reconstructing the
basic arithmetic operations, such as addition and multiplication,
NALU can well solve the data-extra problem. Figure 9 shows the
structure of our prediction model, and we also plot its prediction
result in Figure 8, which works much better than LSTM. We com-
pare the performance of some common time sequence prediction
methods, such as auto regressive moving average (ARMA) and linear
regression(LR). In addition, we also compare with different network
structures (e.g., different NALU layers and neuron numbers). The
results are shown in Table 1, and we finally choose the best one. It
is notable that, instead of completely using NALU units to build
up the DNN model, the combination of LSTM and NALU performs
better, which can be explained as LSTM helps to capture the time
sequence pattern.

After combining the dynamic shift model with new viewer pre-
dictor, we can draw a full picture of CLS viewer dynamics.

structure (methods) layers neuron numbers RMSE
ARMA - - 0.012
LR - - 0.014
NALU 2 (32, 32) 0.014
NALU 3 (64, 32, 32) 0.017
LSTM 3 (64, 32, 32) 0.006
LSTM+NALU 3 (2+1) (64, 32, 32) 0.0003
LSTM+NALU 3 (1+2) (64, 64, 32) 0.0008
CNN+LSTM+NALU 5 (2+2+1) (64, 64, 32, 32, 32) 0.0011

Table 1: Comparing new viewer predictor with other meth-
ods and DNN structures in Root Mean Square Error (RMSE)

5.2 QoS Manager
QoS characterizer: The performance of a CDN provider is related
to two kinds of factors: 1) the offloading strategy used by CDN
providers themselves, which we call the inner factors, and 2) serving
workload allocated by platforms, which we call outer factors.

To address the two above factors, we are determined to use
a DNN model and fusion them by carefully designing the DNN
structure. The structure is shown in Figure 10. As depicted, the
model consists of two 2D-convolution layers (CNN) and two LSTM
layers. The thought behind this design is that, we use 2D-CNN to
capture the relationship between workload and QoS metrics, and
use LSTM to capture the temporal information. It is notable that
instead of training separate DNN model for each CDN provider,
which result in large overhead, we input the sequential information
from all CDN providers and output the QoS metrics for each of
them. Besides, we also cascade the model with one NALU layer to
enable its extra-data generalization ability. We compare our model
with other methods in Table 2.

5.3 Optimizer
Since we use DNN model to characterize workload and QoS dynam-
ics, the optimization problem is complex and cannot be directly
solved by using traditional algorithms. To alleviate this problem,
we first discretize the solution space at a specified interval (e.g., 5%

Figure 10: QoS characterizer

structure (methods) layers neuron numbers RMSE
ARMA - - 0.020
LR - - 0.064
NALU 2 (32, 32) 0.022
NALU 3 (64, 32, 32) 0.016
LSTM 3 (64, 32, 32) 0.012
LSTM+NALU 3 (2+1) (64, 32, 32) 0.014
LSTM+NALU 3 (1+2) (64, 64, 32) 0.011
CNN+LSTM+NALU 5 (2+2+1) (64, 64, 64, 32, 32) 0.006

Table 2: Comparing QoS characterizer with other common
methods and DNN structures in RMSE

or 10%). This method enables us to generate a set of solution candi-
dates, from which we can then use effective searching algorithms
(e.g., Alpha-beta pruning [8]) to find the optimal one.

Ideally, given the entire information of dynamics from future
workload and CDN performance, which is unavailable in practice,
the best distribution ratio at each time can be calculated by search-
ing the solution space. However, even though the perfect knowledge
cannot be obtained, it is reasonable that for a short horizon to the
future [tj , tj+N], the prediction can be accurate. Therefore, we run
the optimization process inputting the prediction results in this
horizon, apply the first decision (i.e., the distribution ratio), and
move forward to the next horizon [tj+1, tj+N+1]. This is so-called
model predictive control (MPC). By well utilizing the predictions
and constraints on the manipulated variables, MPC can optimize a
time-variant optimization problem in complex and dynamic system.

We also notice that whether the optimization problem is solv-
able depends heavily on the QoS constraint. To eliminate the pos-
sible illness of the optimization problem, we introduce a hyper-
parameter k . In details, at each time step t , we input predicted
variables (wi

new,t ,QoS
t
i) and select out k distribution decisions

which can obtain the highest average QoS, i.e., the top-k decisions
(xtopkt). Then we find the most cost-effecient decision among them.
It is easy to see that here k is equivalent to the QoStarдet .

Actually, the hyper-parameter k in top-k (i.g., the QoStarдet)
reflects the preference of CLS platform. For example, if we set k = 1,
i.e., regardless of the costs, Livesmart will make decisions in a QoS-
only way. Also, if we setk = ∞, i.e., regardless of the QoS, Livesmart
will only optimize the overall costs (i.e., greedy).

Algorithm 1 shows how the Optimizer part works. As denoted,
the optimizer makes the decision (i.e., x it) by looking forward N
steps. At each time, it first selects out the top-k QoSmax candidates
with the CDN performance prediction {QoStj ,tj+N } from QoS man-
ager andworkload dynamics {wi

t (x
i
t), t ∈ [tj , tj+N]} fromworkload

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

425

Algorithm 1 The core control of Optimizer
1: Initialize
2: for j = 1 to T do
3: wnew

[tj ,tj+N]
=WorkloadPred(whis)

4: for All possible x[tj ,tj+N] do
5: wi,new

[tj ,tj+N]
= x[tj ,tj+N] ∗w

new
[tj ,tj+N]

6: W i,r e
[tj ,tj+N]

= DyShi f t(wi,new
[tj ,tj+N]

)

7: wi
[tj ,tj+N]

=W i,r e
[tj ,tj+N]

+wi,new
[tj ,tj+N]

8: update Si
[tj ,tj+N]

according to Eq.(1)
9: QoS[tj ,tj+N] = QoSCharac(w[tj ,tj+N],QoShis)

10: x
topk
[tj ,tj+N]

= TopK(QoS[tj ,tj+N])

11: end for
12: xtk = arg min

x topk
[tj ,tj+N]

m∑
i=1

cost(Sitj+N)

13: end for =0

manager. Then it chooses the most cost-efficient decision among
these k candidates.

6 EVALUATION
6.1 Methodology
Dataset: The dataset is composed of two parts: the viewer data
and the CDN data, and all of them are provided by Kuaishou4, a
leading CLS platform in China. The viewer data consist of more
than 500M view sessions from 50M viewers, each consists of the
detailed session information including user ID, start time, end time,
CDN provider, ISP, and province. The CDN data consist of the
performance statistic information including startup latency, stalling
frequency, and stalling rate5.

Comparingmetrics: The comparison consists of two parts: the
QoS and the costs. For QoS, we consider three industrial standard
metrics including startup latency (denoted as startup), stalling fre-
quency (denoted as stallFreq) and stalling rate (denoted as stallRate),
and similar to [6, 12], we also use the weighted sum of them, which
is simple and interpretable (other QoS settings can still work):

QoS = −α ∗ startup − β ∗ stallFreq − γ ∗ stallRate (8)

we set α = 5, β = 1 and γ = 1 to scale them into close value. For the
costs, we use charging policies obtained from the CDN provider
website and calculate the overall costs.

Implementation: Despite there is a total of 5 CDN providers
in our dataset, a normal setting is 3 CDN providers [1]. Therefore,
without loss of generality, we select 3 of them in our experiment.
At the same time, we choose the viewer and CDN provider data in
the same group. For dynamic shift model (update once an hour), we
discretize the time interval into δ = 1min (we choose 1min as too
short period will introduce noise when doing data statistics), and set
k = 10min when calculating Eq. (7). For the new viewer predictor,
we use two LSTM layers of size 64 and 32 (sigmoid as inner acti-
vation and tanh as activation function), and one NALU layer of 32

4www.kuaishou.com
5stalling rate represents the rate between the stalling event and the time of a total
session.

k 5% 10% 20% 50% 100%
Cost (norm) 0.72 0.40 0.37 0.34 0.30
Average QoS −4.41 −4.43 -4.46 −4.87 −5.14

Table 3: Performance of Livesmart under different top-k
NALU units (the same setting with [19]). For the QoS characterizer,
we use two layers 2D-CNN with 64 filters (relu as the activation
function), each of size 2, stride 1. Both QoS characterizer and new
viewer predictor use Adam optimizer and uniform initializer, and
they have the same layer configuration. For the MPC solver, we
set the horizon N = 3 and top-k as top-20%. The decision space is
discretized into interval 10% (e.g., the ratio of 3 CDN providers t
can be [0.1, 0.1, 0.8]). Therefore, there are 36 possible distribution
ratios (

(9
2
)
) at each time step. Considering horizon number, there

are totally 363 = 46656 choices.
Baseline algorithms: We compare Livesmart with following

algorithms:
The original algorithm: The strategy used by the data provider,

the result of which can be directly obtained from collected data.
RoundRoubin: The most widely used scheduling method by plat-

forms. Viewers are scheduled in a uniformly random order.
Cost only: This algorithm minimizes the overall costs regardless

of the CDN performance.
QoS only: This algorithm maximizes the QoS regardless of the

costs, i.e., the parameter k in top-k is set to be k = 1.
Gready: This algorithm has the same configuration parameters

with Livesmart except for the MPC part, in which the prediction
horizon is set to be N = 1.

6.2 Results and discussion
We first compare the overall costs of each algorithm. We present
the results in Figure 11, from which we derive the following two
observations: 1) Considering the real-world constraints (Origin,
RoundRoubin, QoSOnly, and Greedy), our proposed Livesmart out-
performs the baselines in all six days. For example, we can see that
on the first day, Livesmart saves costs by 24.97%, 27.60%, 63.45%
and 9.67% against four baselines respectively. It is reasonable since
Livesmart considers the overall costs and makes the decisions in a
long-term way. 2) Among all baselines, QoSOnly is the most cost-
inefficient algorithm. For example, as presented in Figure 11(a),
QoS-Only method increases the overall costs 2.5 − 3.3× compar-
ing with Cost-Only method. The reason is: QoS-Only algorithm is
more attentive to schedule viewers to the best-performance CDN
providers, which makes them more likely to get higher peak load
and therefore higher costs.

Moreover, we also investigate the QoS value of different algo-
rithms in each day, and present the results in Figure 11(b). We
can find that except for the QoS-Only algorithm which is cost-
inefficient, Livesmart achieves the highest QoS value against other
baselines. For example, in the third day, Livesmart outperforms the
four baselines (i.e., Origin, RoundRoubin, Cost-Only, and Greedy)
by 7.63%, 5.79%, 7.42%, and 3.18%, respectively. Notably, the Greedy
method performs consistently well when comparing with other
baselines, since it still makes decisions considering both cost and
QoS dynamics even if only one step further.

To better understand the QoS achieved by Livesmart, we also
analyze the individual component of our QoS definition (i.e., Eq.(8)).
In details, we present the average value of each QoS metric in

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

426

1 2 3 4 5 6

Day

0.2

0.4

0.6

0.8

1

C
o
s
t
(n

o
rm

a
liz

e
d
)

Origin

RoundRoubin

CostOnly

QoSOnly

Greedy

Livesmart

(a) Cost comparison

1 2 3 4 5 6

Day

-6

-5.5

-5

-4.5

-4

Q
o
S

Origin

RoundRoubin

CostOnly

QoSOnly

Greedy

Livesmart

(b) QoS comparison
(c) Different metrics in QoS definition

Figure 11: Comparison results. The Evaluation on real-world traces shows that Livesmart outperforms prevalent algorithms
by 24.57%-63.45% decrease on overall costs and 5.79%-7.63% improvement on average QoS. Especially, Livesmart consistently
outperforms baselines on all three QoS metrics.

(a) Sensitivity experiments of dynamic shift
model

0 10 20 30 40 50 60

Error / %

0.35

0.4

0.45

0.5

0.55

C
o
s
t
(n

o
rm

a
liz

e
d
)

-5.6

-5.1

-4.6

Q
o
S

 v
a
lu

e

Cost

QoS

(b) Sensitivity experiments of new viewer
predictor

0 5 10 15 20 25 30 35 40

Error / %

0.35

0.4

0.45

0.5

0.55

C
o
s
t
(n

o
rm

a
liz

e
d
)

-5.6

-5.1

-4.6

Q
o
S

 v
a
lu

e

Cost

QoS

(c) Sensitivity experiments of QoS charac-
terizer

1 2 3 4 5

Future horizon

0.38

0.41

C
o
s
t
(n

o
rm

a
liz

e
d
)

-4.85

-4.8

-4.75

Q
o
S

 v
a
lu

e

Cost

QoS

(d) Sensitivity experiments of lookahead
horizon

Figure 12: Sensitivity experiments. The results show that all three parts are essential for Livesmart.

Figure 11(c). We can see that except for the QoS-Only algorithm,
Livesmart performs the best in all three QoS metrics.

We also present the relationship between Livesmart performance
and parameter k in top-k . As denoted in Table 3, we can see that as
the k increases, Livesmart is more attentive to make decisions in a
cost-efficient way, which reflects the preference of platforms.

6.3 Sensitivity experiments
In this section, we will study the influence of the following parts:
(1) the dynamic shift model and new viewer predictor in workload
manager; (2) the QoS characterizer in QoS manager; and (3) the
look-ahead horizon N in the optimizer.

Workload Manager: This component consists of two parts:
the workload dynamic shift model and new viewer predictor. For
the first part, we compare the performance of Livesmart with
shift model and without shift model. We present the results in
Figure 12(a). Comparing with Livesmart, Livesmart without shift
model increases the costs about 11.2% and decreases the QoS about
7.4%. This is reasonable since without shift model, Livesmart can-
not control the viewers in an overall way. Then, we analyze how
new viewer prediction error influences the performance by adding
different level of random noise. As denoted in Figure 12(b), a 10%
increase of prediction error will result in about 4% QoS drop and
5% costs increase.

QoS Manager: Figure 12(c) analyzes the impacts of QoS char-
acterizer. We can observe that with the increase of the prediction
error, Livesmart performs worse both on costs and average QoS.
It is also notable that comparing with workload predictor error,
Livesmart is more sensitive to QoS characterizer error. For example,

from Figure 12(c), we see that 20% error of QoS manager increases
overall costs by 12% and decreases the average QoS by 25%, while
for new viewer prediction error, the costs increase by 9% and QoS
decreases 11%. This can be explained as: Livesmart makes decisions
in a QoS-first manner, which makes the results more likely to be
influenced by the QoS manager.

Optimizer: Figure 12(d) shows how the look-ahead horizon
impacts the performance of Livesmart. As the horizon number N
increases, the performance of Livesmart starts to increase. This is
because Livesmart uses more future information and thus planning
in a long-term way. At the same time, when Livesmart predicts too
far (i.e., more than 4 next time steps), as the prediction accuracy
reduces significantly, the performance starts to drop. Considering
QoS priority and calculation overhead, we finally choose N = 3.

7 CONCLUSION
We propose Livesmart, a QoS-guaranteed cost-minimum approach
for CLS services. Specifically, we address several critical challenges
in the framework design including a) accurate modeling of viewer
pattern and CDN performance; b) intelligent workload offloading
to save costs while guaranteeing the quality of service (QoS); c)
and ease of integration with practical CDN infrastructure in CLS
service. The experiments demonstrate that Livesmart schedules
viewers both effectively and economically.
Acknowledgement: We sincerely thank all reviewers and our
shepherd Yuansong Qiao. This work was supported by the National
Key R&D Program of China (No. 2018YFB1003703), NSFC under
Grant 61521002, Beijing Key Lab of Networked Multimedia, and
Kwai-Tsinghua Joint Project (No. 20192000456).

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

427

REFERENCES
[1] Vijay Kumar Adhikari and et al. 2012. A tale of three CDNs: An active mea-

surement study of Hulu and its CDNs. In Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE, 7–12.

[2] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz
Steiner, and Zhili Zhang. 2012. Unreeling netflix: Understanding and improving
multi-CDN movie delivery. (2012), 1620–1628.

[3] Yonghwan Bang, June-Koo Kevin Rhee, KyungSoo Park, Kyongchun Lim, Giyoung
Nam, John D Shinn, Jongmin Lee, Sungmin Jo, Ja-Ryeong Koo, Jonggyu Sung,
et al. 2016. CDN interconnection service trial: implementation and analysis. IEEE
Communications Magazine 54, 6 (2016), 94–100.

[4] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
2018. Open connect everywhere: A glimpse at the internet ecosystem through
the lens of the netflix cdn. ACM SIGCOMM Computer Communication Review 48,
1 (2018), 28–34.

[5] Fei Chen, Cong Zhang, Feng Wang, and Jiangchuan Liu. 2015. Crowdsourced live
streaming over the cloud. In 2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE, 2524–2532.

[6] Florin Dobrian, Asad K Awan, Dilip Antony Joseph, Aditya Ganjam, Jibin Zhan,
Vyas Sekar, Ion Stoica, and Hui Zhang. 2013. Understanding the impact of video
quality on user engagement. Communications of The ACM 56, 3 (2013), 91–99.

[7] Chongwu Dong, Yin Jia, Hua Peng, Xiaoxing Yang, and Wushao Wen. 2018. A
Novel Distribution Service Policy for Crowdsourced Live Streaming in Cloud
Platform. IEEE Transactions on Network and Service Management 15 (2018), 679–
692.

[8] Daniel James Edwards and TP Hart. 1961. The alpha-beta heuristic. (1961).
[9] Jian He, Di Wu, Yupeng Zeng, Xiaojun Hei, and Yonggang Wen. 2013. Toward op-

timal deployment of cloud-assisted video distribution services. IEEE transactions
on circuits and systems for video technology 23, 10 (2013), 1717–1728.

[10] Nicolas Herbaut, Daniel Négru, Yiping Chen, Pantelis A Frangoudis, and Adlen
Ksentini. 2016. Content delivery networks as a virtual network function: A
win-win ISP-CDN collaboration. In 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, 1–6.

[11] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui
Zhang. 2016. {CFA}: A Practical Prediction System for Video QoE Optimization.
In 13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 16). 137–150.

[12] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. 2017. Pytheas: Enabling
data-driven quality of experience optimization using group-based exploration-
exploitation. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17). 393–406.

[13] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and Chen Tian.
2012. Optimizing cost and performance for content multihoming. In Proceedings

of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. ACM, 371–382.

[14] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and
Hui Zhang. 2012. A case for a coordinated internet video control plane. acm
special interest group on data communication 42, 4 (2012), 359–370.

[15] Zoltán Ádám Mann. 2015. Allocation of virtual machines in cloud data center-
sâĂŤa survey of problem models and optimization algorithms. Acm Computing
Surveys (CSUR) 48, 1 (2015), 11.

[16] Haitian Pang, Zhi Wang, Chen Yan, Qinghua Ding, and Lifeng Sun. 2017. First
Mile in Crowdsourced Live Streaming: A Content Harvest Network Approach.
(2017), 101–109.

[17] Haitian Pang, Cong Zhang, Fangxin Wang, Han Hu, Zhi Wang, Jiangchuan
Liu, and Lifeng Sun. 2018. Optimizing Personalized Interaction Experience in
Crowd-Interactive Livecast: A Cloud-Edge Approach. In 2018 ACM Multimedia
Conference on Multimedia Conference. ACM, 1217–1225.

[18] James Blake Rawlings and David Q Mayne. 2009. Model predictive control: Theory
and design. Nob Hill Pub. Madison, Wisconsin.

[19] Andrew Trask and et al. 2018. Neural arithmetic logic units. In Advances in
Neural Information Processing Systems. 8046–8055.

[20] Feng Wang, Jiangchuan Liu, Minghua Chen, and Haiyang Wang. 2016. Migra-
tion towards cloud-assisted live media streaming. IEEE/ACM Transactions on
networking 24, 1 (2016), 272–282.

[21] Jason Min Wang, Jun Zhang, and Brahim Bensaou. 2014. Content multi-homing:
An alternative approach. In 2014 IEEE International Conference on Communications
(ICC). IEEE, 3118–3123.

[22] Zhi Wang, Lifeng Sun, Chuan Wu, Wenwu Zhu, and Shiqiang Yang. 2014. Joint
online transcoding and geo-distributed delivery for dynamic adaptive streaming.
(2014), 91–99.

[23] Bo Yan, Shu Shi, Yong Liu, Weizhe Yuan, Haoqin He, Rittwik Jana, Yang Xu, and
H Jonathan Chao. 2017. LiveJack: Integrating CDNs and Edge Clouds for Live
Content Broadcasting. In Proceedings of the 25th ACM international conference on
Multimedia. ACM, 73–81.

[24] Zidong Yang, Ji Hu, Yuanchao Shu, Peng Cheng, Jiming Chen, and Thomas
Moscibroda. 2016. Mobility modeling and prediction in bike-sharing systems.
In Proceedings of the 14th annual international conference on mobile systems,
applications, and services. ACM, 165–178.

[25] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Charlie Hu, Ratul Mahajan,
and Blaine Christian. 2010. Optimizing cost and performance in online service
provider networks. (2010), 3–3.

[26] Yifei Zhu, Jiangchuan Liu, Zhi Wang, and Cong Zhang. 2017. When Cloud Meets
Uncertain Crowd: An Auction Approach for Crowdsourced Livecast Transcoding.
(2017), 1372–1380.

Session 1D: Live Multimedia Applications & Streaming MM ’19, October 21–25, 2019, Nice, France

428

	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 The dynamics of CDN providers
	3.2 The dynamics of CLS viewers

	4 Formulation
	5 System overview
	5.1 Workload Manager
	5.2 QoS Manager
	5.3 Optimizer

	6 Evaluation
	6.1 Methodology
	6.2 Results and discussion
	6.3 Sensitivity experiments

	7 conclusion
	References

